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ABSTRACT
We propose a novel efficient model-fitting algorithm for state space models. State space models are an
intuitive and flexible class of models, frequently used due to the combination of their natural separation
of the different mechanisms acting on the system of interest: the latent underlying system process; and
the observation process. This flexibility, however, often comes at the price of more complicated model-
fitting algorithms due to the associated analytically intractable likelihood. For the general case a Bayesian
data augmentation approach is often employed, where the true unknown states are treated as auxiliary
variables and imputed within the MCMC algorithm. However, standard “vanilla” MCMC algorithms may
perform very poorly due to high correlation between the imputed states and/or parameters, often leading
to model-specific bespoke algorithms being developed that are nontransferable to alternative models. The
proposed method addresses the inefficiencies of traditional approaches by combining data augmentation
with numerical integration in a Bayesian hybrid approach. This approach permits the use of standard
“vanilla” updating algorithms that perform considerably better than the traditional approach in terms of
improved mixing and lower autocorrelation, and has the potential to be incorporated into bespoke model-
specific algorithms. To demonstrate the ideas, we apply our semi-complete data augmentation algorithm to
different application areas and models, leading to distinct implementation schemes and improved mixing
and demonstrating improved mixing of the model parameters. Supplementary materials for this article are
available online.
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1. Introduction

Inference about a latent state governing the dynamics of the sys-
tem under study given only the observed noisy data is of interest
in many contexts, for example, in applied statistics, ecology,
engineering, or economics. A very intuitive way of describing
such problems is provided by latent process models, also known
as state space models (SSM), see Durbin and Koopman (2012)
and West and Harrison (1997). Such models are frequently
used due to the combination of their natural separation of
the different mechanisms acting on the system of interest: the
(unobserved) underlying system process; and the observation
process. Considering each distinct process separately simplifies
the model specification process and provides a very flexible
modeling framework. This flexibility, however, typically comes
at the price of substantially more complicated fitting of such
models to data as for the general nonlinear non-Gaussian SSM
the associated likelihood is analytically intractable. Only in cer-
tain circumstances the associated likelihood can be calculated
explicitly: for linear Gaussian systems the likelihood can be
obtained by applying the Kalman filter; for hidden Markov
models (HMMs) with a discrete state space the likelihood may
admit a closed-form but may become infeasible for a large
number of states. In this article we focus on models for which
the likelihood is intractable or for which it may be unfeasible to
compute explicitly.

CONTACT Agnieszka Borowska Agnieszka.Borowska@glasgow.ac.uk School of Mathematics Statistics, University of Glasgow, Glasgow, UK.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

Dominant approaches to intractable likelihood problems
include: (i) numerical or Monte Carlo integration to estimate
the observed (or marginal) data likelihood; and (ii) data aug-
mentation (DA), based on the complete (or joint) data likelihood
of the observed and the imputed unobserved states, see Tanner
and Wong (1987). Approach (i) includes sequential Monte Carlo
(SMC) methods, see Doucet, de Freitas, and Gordon (2001),
which can be used for parameter estimation within a standard
Markov chain Monte Carlo (MCMC) algorithm (i.e., particle
MCMC, Andrieu, Doucet, and Holenstein 2010). In general,
numerical integration is efficient for low dimensional systems.
Alternatively (ii) DA have become standard for inference for
SSMs within a Bayesian framework, see Frühwirth-Schnatter
(1994b, 2004). DA treats the true unknown states as auxiliary
variables and imputes them within an MCMC algorithm.
However, “vanilla” MCMC methods may perform very poorly
due to high correlation between the imputed states and/or
parameters, see Hobert, Royand, and Robert (2011) and the
references therein.

A range of algorithms have been developed to improve the
sampling efficiency for SSMs. One class of techniques includes
reparameterizations for more efficient sampling, relating to
centered and noncentered parameterizations described in
Papaspiliopoulos, Roberts, and Sköld (2007). For instance,
Strickland, Martin, and Forbes (2008) examine the effect
of particular types of reparameterization in two specific
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non-Gaussian state space models (the stochastic volatility,
SV, model and the stochastic conditional duration model);
while Kastner and Frühwirth-Schnatter (2014) and Bitto and
Frühwirth-Schnatter (2019) propose to combine two DA
schemes based the ancillarity-sufficiency interweaving strategy
(ASIS) developed by Yu and Meng (2011). Alternatively, a
group of subsampling MCMC methods aims to speed up the
computations by taking a subsample of the data in each MCMC
iteration, see Maclaurin and Adams (2014), Bardenet, Doucet,
and Holmes (2017), Quiroz et al. (2019) and references therein.

In this article we propose a novel model-fitting algorithm
to circumvent the inefficiencies of DA by using a combina-
tion of imputation and numerical integration within a Bayesian
hybrid approach. In particular, we consider the case where
the states are ordered, but permit the states to be discrete or
continuous valued. Related ideas have been proposed before, for
example, in the context of Bayesian forecasting, Harrison and
Stevens (1976) approximate the posterior distribution of a SSM
using discretization which they refer to as “multi-process filter-
ing”; Frühwirth-Schnatter (1994a) uses Gauss-Hermite integra-
tion to develop an approximate Kalman filter for SSMs. More
recently, Strickland et al. (2009) use a univariate representation
of multivariate SMMs for their efficient MCMC estimation. The
idea underlying our hybrid approach is to combine the “good”
aspects of both methods by minimizing the problems that arise
for each, that is, highly correlated latent states for DA and the
curse of dimensionality for numerical integration. To this end,
we use the structure of the unknown states and split them
into two types: auxiliary variables, imputed within the MCMC
algorithm; and “integrable” states, numerically integrated out
within the likelihood function. We refer to this likelihood as the
semi-complete data likelihood.

Since the resulting semi-complete data likelihood may still be
analytically intractable, we propose to numerically approximate
it by embedding it into an HMM form. To this end, we first
notice that quadratures (with fixed or adaptive nodes) can be
seen as “binning” of similar values of the integrated state vector
within specified ranges (“bins”), which can then be interpreted
as states of a (finite-dimensional) first-order HMM. Second,
we use the specified states of the underlying Markov chain to
express the approximation to the semi-complete data likelihood
in a general form as the likelihood of the associated HMM. We
note that this approximation approach assumes that the SSM of
interests belongs to one of the following three important classes:
discrete multivariate (e.g., HMMs and factor HMMs), integer
count multivariate (illustrated in Section 5.2), and continuous
multivariate (illustrated in Section 5.1).

There are several novel aspects of the proposed methodol-
ogy. First, we specify the general semi-complete data likelihood
methodology for the large class of SSMs. We note that a similar
semi-complete data likelihood approach was applied to the par-
ticular case of capture-recapture data (King et al. 2016). Second,
we propose a general framework for approximating the integrals
that arise within the SSMs based on fixed and adaptive grids,
generalizing the idea of Langrock, MacDonald, and Zucchini
(2012b) who developed fixed-grid approximation for the special
case of frequentist estimation for the stochastic volatility model.
Third, we express the approximation to the semi-complete data
likelihood as a likelihood of the associated HMM, where the

value of the integrated state vector within specified range are
interpreted as states of an HMM. Finally, we consider efficient
numerical approximations for both continuous and discrete
variables.

We note that the novel approach we propose does not rely on
any particular MCMC updating scheme but on the specification
of the auxiliary variables. It is the choice of the analyst what
specific sampler is used for updating these auxiliary variables.
In our experiments in Section 5 we apply the random walk
Metropolis–Hastings (RW-MH) algorithm as it is often used in
practice and it acts as a “vanilla” MCMC algorithm (see Marin
and Robert 2007, chap. 4). We note, however, that one may
use more advanced samplers such as Hamiltonian Monte Carlo
(HMC, Neal 2011) or the No-U-Turn Sampler (NUTS, Hoffman
and Gelman 2014) for continuous states or even probabilistic
programming languages such as Stan (Stan Development Team
2019) or JAGS (Plummer 2017). Finally, we emphasize that the
proposed method serves as a part of the analysts’ toolbox of
techniques, providing a new building block for the construction
of complex algorithms, in which it is combined with other
algorithms to achieve further efficiency gains. For example, in
practice, reparameterization strategies such as centered/non-
centered parameterizations or ASIS can be immediately com-
bined with our proposed approach as these techniques do not
affect the dependence structure of the model.

The structure of the article is as follows. Section 2 presents
the general SSM specification and the standard approaches to
their fitting. Section 3 introduces the proposed semi-complete
data augmentation (SCDA) approach, while Section 4 develops
a general HMM-based likelihood approximation. We consider
the performance of our SCDA method in Section 5, based on
empirical applications related to the unobserved component
stochastic volatility model and abundance estimation. Section 6
concludes with a discussion.

2. State Space Models

Consider a state space model given by (t = 1, . . . , T)

yt|xt , θ ∼ p(yt|xt , θ), (1)
xt|xt−1, θ ∼ p(xt|xt−1, θ), (2)

x0|θ ∼ p(x0|θ). (3)

Let y = (y1, . . . , yT) (with yt = (y1,t , . . . , yM,t)T potentially
multivariate, of dimension M < ∞, with ym,t ∈ Ym) denote
a time series of observations of length T, x = (x0, . . . , xT) a
series of latent states (with xt = (x1,t , . . . , xD,t)T potentially
multivariate, of dimension D < ∞, with xd,t ∈ Xd) and θ the
model parameters for which we put a prior p(θ). To simplify
notation, we use p as a general symbol for a probability mass
function (pmf) or a probability density function (pdf), possibly
conditional.

The system process describing the evolution of xt , the true
(unobserved) state of the system over time is defined by dis-
tribution (2). The observation process which generates yt , the
observed data given the true underlying states, is specified by
distribution (1). This separation of the different mechanisms
acting on the system of interest makes SSM a very intuitive
and flexible description of time series data. Figure 1 graphically
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Figure 1. A graphical representation of the general first-order SSM. Squares repre-
sent the observed data, circles—the unknown variables.

presents the dependencies between states and observations in
the SSM. An extensive discussion of SSMs is provided by Durbin
and Koopman (2012) and Cappé, Moulines, and Ryden (2006),
where the latter authors refer to this class of models as hidden
Markov models (HMM). Throughout this article we refer to the
general class of models as SSMs, and restrict the term HMMs
to models with discrete states only (i.e., dim(Xd) < ∞); this is
the convention used by for example, Zucchini, MacDonald, and
Langrock (2016).

Modelling flexibility of SSMs is, however, often offset with
the issue of estimating θ , the associated model parameters. The
observed data likelihood for the system (1)–(3)

p(y|θ) =
∫

p(y, x|θ)dx

=
∫

p(x0|θ)

T∏
t=1

p(yt|xt , θ)p(xt|xt−1, θ)dx0dx1 . . . dxT ,

(4)

is typically not available in closed form due to the necessary inte-
gration over the latent variables. This is despite the tractability
of p(y, x|θ), the joint distribution of the data and the auxiliary
variables, often referred to as the complete data likelihood.

For models with discrete states the observed data likelihood
is the likelihood of an HMM, where the states of the chain
correspond to distinct values of the latent process, and the
transition matrix can be derived from the transition equation
(2). This likelihood can be efficiently calculated using the for-
ward algorithm (see Zucchini, MacDonald, and Langrock 2016).
However, for systems with multiple processes or processes with
a large set of possible states this can lead to this approach being
unfeasible.

To overcome the problem of the intractable likelihood, a DA
technique is commonly adopted, see Tanner and Wong (1987),
Frühwirth-Schnatter (1994b, 2004), and Hobert (2011). The
unknown states x are treated as auxiliary variables and imputed
leading to a closed-form complete data likelihood (5) which in
a Bayesian framework is used to construct the joint posterior
distribution of θ and x in (6):

p(y, x|θ) = p(x0|θ)

T∏
t=1

p(yt|xt , θ)p(xt|xt−1, θ), (5)

p(x, θ |y) ∝ p(y, x|θ)p(θ) = p(y|x, θ)p(x|θ)p(θ). (6)

An MCMC algorithm (or other) can be used to obtain a sample
from (6), from which we obtain p(θ |y), the marginal posterior
of θ . In practice the random walk Metropolis–Hastings (RW-
MH) algorithm is often used and it acts as a “vanilla” MCMC
algorithm (see Marin and Robert 2007, chap. 4).

However, this approach often results in posterior draws being
highly correlated, indicating poor mixing and hence low effi-
ciency of MCMC algorithms. This is particularly the case for
SSMs which impose a strong dependence structure on the latent
variables and parameters. Single-update algorithms can per-
form especially poorly and block updates can lead to improved
mixing. However, the latter often require defining an appro-
priate partition of the states and parameters into blocks and
specifying an efficient proposal distributions for each block.
Thus, bespoke codes often need to be written dependent on
model and data.

3. Semi-Complete Data Augmentation

We propose to combine DA with numerical integration within
a Bayesian hybrid framework, which we call semi-complete data
augmentation (SCDA). A key idea is to separate the latent state
x into two components x = (xT

aug, xT
int)

T . We will refer to
xint and xaug as the “integrated” states and the “augmented”
states, respectively. We specify the semi-complete data likelihood
p(y, xaug|θ) as follows

p(y, xaug|θ) =
∫

p(y|xaug, xint, θ)p(xaug, xint|θ)dxint. (7)

The joint posterior distribution of the parameters and aug-
mented states is given by

p(xaug, θ |y) ∝ p(y, xaug|θ)p(θ) = p(y|xaug, θ)p(xaug|θ)p(θ).
(8)

We note that the approach of King et al. (2016), who propose
a Bayesian hybrid approach for the particular case of capture-
recapture data, is a special case of our general approach pro-
posed here.

3.1. Specification of xaug, xint

Consider a series of latent states x = {xt}T
t=0 of length T + 1,

where the state at time t is D dimensional: xt = (x1,t , . . . , xD,t)T ,
for t = 0, 1, . . . , T. We want to integrate out Dint dimensions
of the state at time points Tint, where Dint ⊂ {1, . . . , D} and
Tint ⊂ {0, 1, . . . , T} are “suitably” chosen subsets of dimension
and time indices, respectively. Such a “suitable” specification of
Dint and Tint depends on the dependence structure of the model
so that the associated integral can be efficiently calculated. For
instance, it can be low dimensional or it can be reduced to
a product of low-dimensional integrals. We denote the com-
pliments of both subsets Daug and Taug, respectively. We also
let T+

int and T+
aug denote the corresponding sets without the

initial observations, that is, excluding time t = 0, and we set
T∗ = |T+

int|. The “integrated” and “augmented” states are then
defined as the partition of x into xint = {xd,t}d∈Dint,t∈Tint and
xaug = {xd,t}d∈Daug,t∈Taug , where their corresponding elements
at time t are denoted by xint,t = {xd,t}d∈Dint and xaug,t =
{xd,t}d∈Daug , respectively. As example, consider the two following
schemes.

(i) “Horizontal” integration: for example, for a D = 2 dimen-
sional state we integrate out the second state at all time
periods, so that Dint = {2} (and hence, Daug = {1}),
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Figure 2. Two examples of an integration/augmentation scheme. Diamonds represent the imputed states, circles—the integrated states. Dashed lines used for the relations
from the imputed (known) states.

and Tint = {0, 1, . . . , T} (and hence Taug = Tint), see
Figure 2(a). We use this scheme in the lapwings data appli-
cation in Section 5.2.

(ii) “Vertical” integration: for example, all D states are integrated
out at odd time periods, so that Dint = {1, . . . , D} and
Tint = {2t + 1}�T/2	

t=0 (and hence, Taug = {2t}�T/2	
t=0 ),

see Figure 2(b). We use this scheme in the unobserved
component stochastic volatility (UCSV) model application
in Section 5.1, for D = 1 dimensional state.

As we can see, in general Tint and Taug do not need to be equal
and their elements may not be consecutive numbers. However,
we would like to iterate over both sets using the same index.
Therefore, we introduce two functions τ(t) and a(t) such that
the image of τ is T+

int and the image of a covers T+
aug, both

defined on 1, 2, . . . , T∗. We require τ to be bijective and allow
a to take values in the power set of T+

aug. The latter characteristic
means that a(t) can take two or more values in T+

aug but also
no value (i.e., a(t) = ∅). In the two examples above we have
τ(t) = t and a(t) = t for the horizontal integration (a) and
τ(t) = 2t + 1 and a(t) = 2t for the vertical integration (b).
Additionally, we specify a function for observations o(t) with a
similar role to τ and a, that is, allowing us to iterate over the
set of observation indices {1, . . . , T} using the same index as to
iterate over Tint and Taug. Thus, we want the image of o(t) to
be {1, . . . , T}, which may consists of elements from both Tint
and Taug. This means that we need to be able to assign multi-
ple indices from {1, . . . , T} to t. Hence, we allow o(t) to take
values in the power set of Tint ∪ Taug. For illustration, consider
vertical integration (b) together with conditionally independent
observations yt|xt ∼ p(yt|xt). For t = 1, 2, . . . , T∗ consider
states in two different time periods: at τ(t) = 2t + 1 for xint
and at a(t) = 2t for xaug, so for each t we need to account
for two different observations, yτ(t) and ya(t). This means that
o(t) = {2t, 2t + 1} for t ≥ 1. In this case we also need to
account for y1 so we additionally specify o(t) = {2t + 1} for
t = 0. For horizontal integration given in (a) Tint = Taug, hence,
o(t) = t.

In order to identify conditionally independent latent states
to “integrate out,” one can use the graphical structure of the
problem: Figure 1 can be seen as an directed acyclic graph
(DAG), for which the literature on dynamic Bayesian networks
(see Murphy 2002) provides insights regarding the impact of
conditioning on a certain node (d-separation). In the context
of particle filters Doucet et al. (2000) note that the “tractable
structure” of some state space models might by analytically
marginalized out given imputed other nodes.

3.2. Approximate Marginal Likelihood

The semi-complete data likelihood p(y, xaug|θ) in the joint
posterior distribution of θ and xaug in (8) may still be analytically
intractable. In this case we can estimate it using simulation-
based techniques. Consider a sample of length N of unknown
variables of interest (i.e., θ and xaug). Here, N is the number
of points used for integration: for a deterministic integration
it is the number of evaluation points, for a stochastic, that
is, Monte Carlo (MC), integration it is the number of draws.
We use such a sample to compute p̂N(y, xaug|θ), the N-
sample estimator of the semi-complete data likelihood, and
consequently to approximate the posterior distribution as
p̂N(xaug, θ |y) ∝ p̂N(y, xaug|θ)p(θ). We set p̂N(y, xaug|θ) such
that p̂N(y, xaug|θ)

N→∞→ p(y, xaug|θ), so that p̂N(xaug, θ |y)
N→∞→

p(xaug, θ |y). Further properties of the resulting estimator
depend on the approximation scheme. If it is unbiased and
nonnegative, standard MCMC algorithms converge to the exact
posterior distribution p(xaug, θ |y), which follows from the
pseudo-marginal argument, see Beaumont (2003), Andrieu and
Roberts (2009), and Andrieu, Doucet, and Holenstein (2010).
Pseudo-marginal algorithms are called “exact approximate” and
we note that they are the extreme case of our approach with
xint = x. Whether our approximate MCMC algorithm is “exact
approximate” or “just approximate” depends on whether or not
p̂N(y, xaug|θ) is an unbiased and nonnegative estimator of the
marginal likelihood.

The “just approximate” algorithms, such as a quadrature, can
be made arbitrarily close to the true integral by considering suf-
ficiently many points (i.e., as N → ∞). Alternatively, unbiased
estimators using an MC approach might be characterized by
large MC errors, particularly for a small number of samples,
see, for example, Korattikara, Chen, and Welling (2014), Jacob
and Thiery (2015). The choice between different likelihood
approximation methods fits into the traditional discussion on
the bias-variance tradeoff.

3.3. Dimensionality of Observations and States and
Scalability

In the general SSM specification (1)–(3) we allow for multivari-
ate observations y, however, as observed data, the dimensional-
ity of y does not play any particular role in the SCDA approach
beyond the specification of the observation process, given the
latent states, x. The dimension of the latent states, x, directly
influences the basic DA algorithm, in terms of the number of
auxiliary variables imputed within the algorithm, and hence,
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associated computational implications. For the SCDA approach
the dimension of x will impact both the specification of the set of
imputed and integrated states (a larger dimension increases the
number of possible divisions), as well as the number of auxiliary
variables. In general, there remains some form of the curse of
dimensionality due to the increased computational demands
for increased numbers of auxiliary variables, however, for the
SCDA approach there is some additional flexibility in terms of
the specification of the set of integrated and imputed states. In
general, feasible dimensions of x will be dependent on the spe-
cific model, associated correlation between the parameters and
specific SCDA approach implemented in terms of the definition
of the imputed and integrated out variables.

As an illustration, consider a time varying parameter (TVP)
model, which is a linear regression model with coefficients
varying over time (Durbin and Koopman 2012, sec. 3.6.1).
This class of models has gained particular interest in macroe-
conometrics and finance as it allows for modeling the varying
importance of groups of predictors over time (see, e.g., Primiceri
2005; Belmonte, Koop, and Korobilis 2014; Bitto and Frühwirth-
Schnatter 2019). For t = 1, . . . , T, consider the following TVP
model,

yt = ztβ t + εt , εt ∼ N (0, σ 2
t ), (9)

β t = β t−1 + ut , u ∼ Nd(0, �), (10)

where yt is a univariate observation and zt = (z1,t , . . . , zd,t)
is a regressors vector, which can contain the lagged values of
yt (i.e., yt−1, yt−2, . . . ). We assume that � is diagonal, so that,
� = diag(ω1,t , . . . , ωd,t), and the system is initialized with β0 ∼
Nd(β , �), where β = (β1, . . . , βd). For simplicity we assume
homoscedastic observation errors, σ 2

t ≡ σ 2, t = 1, . . . , T.
The time varying coefficients represent the d-dimensional

state vector of the TVP model (9)–(10), in which individ-
ual states βi,t , i = 1, . . . , d, are mutually independent.
Thus, when updating βi,t with for example, RW-MH, the
“update-relevant” term in the complete data likelihood is
p(βi,t|βi,t−1)p(yt|β1,t , . . . , βd,t)p(βi,t+1|βi,t), so that the other
states βj,t , j �= i, appear only in the observation distribution.
To obtain a SCDA scheme with one-dimensional integrals in
which all the d states are involved in the integration1 we may set

xint := {βi,t , t = nd + i, n ∈ N, i = 1, . . . , d},

that is, we integrate βi,t every dth time point starting from time
i. For the time t′ update of βi,t′ , t′ �= nd + i, only up to three
disjoint one-dimensional integrals are required: potentially one
per each of p(βi,t|βi,t−1) and p(βi,t+1|βi,t) terms (where the ith
state itself is integrated), and one which involves the state that is
integrated at t′ (i.e. the mod(t′, d)th state).

Extending the basic model (9)–(10) to allow for stochastic
volatility of the observation errors εt can be treated in a similar
manner. If we model σ 2

t = exp(ht), with ht being either a
random walk or AR(1) process, independent from βt , then this
extra new state can be included in xint and we would integrate
βi,t every (d + 1)th time point starting from time i, and ht at
every d + 1 time point starting from time d + 1. We provide

1A naive scheme with one-dimensional integrals would impute all but one
state, say the ith, and apply the vertical integration from Figure 2(b) to the
ith state.

an empirical illustration of this scheme for a simple TVP model
with d = 1 and zt ≡ 1, t = 1, . . . , T in Section 5.1.3.

4. Approximations for MCMC Sampling

In this section we assume that the states of the SSM are ordered
(we discuss the unordered case in Section 6). In particular, we
restrict our attentions to the following three important classes
of SSM: discrete multivariate (e.g., HMMs and factor HMMs),
integer count multivariate (as in Section 5.2), and continuous
multivariate (as in Section 5.1).

We focus on the case when p̂N(y, xaug|θ) can be obtained as
a product of one dimensional integrals. This assumption is less
restrictive than it may appear at first: the choice of the auxiliary
variables can often be made such that this condition is satisfied.
There exist several methods to numerically estimate a single
one dimensional integral including: (i) quadrature with fixed
nodes; (ii) quadrature with adaptive nodes; (iii) stochastic (MC)
integration. Approaches (i) and (ii) can be seen as “binning”
of similar values of the integrated state vector within specified
ranges (“bins”), which can then be interpreted as states of a
(finite-dimensional) first-order HMM. In the context of bins of
equal widths such an approach has been successfully applied for
example, by Langrock et al. (2012a), Langrock, MacDonald, and
Zucchini (2012b), and Langrock and King (2013). For approach
(iii) the resulting estimator of the complete data likelihood is
unbiased and an “exact approximate” algorithm is obtained.
We note that in low dimensions all these methods are feasi-
ble, however, we focus on methods based on the two former
approaches as they provide an intuitive interpretation in terms
of state transition probabilities and conditional (augmented)
observation distributions. There are two cases when such an
approximation might be particularly useful. First, when the state
vector is discrete but of a large size grouping of its elements
into “bins” helps to reduce the size of the problem. Second, for
continuous states any form of numerical integration basically
reduces to splitting of the state space into “bins,” which can then
be further combined into larger groups to increase the efficiency
of the algorithm.

4.1. Approximation Bins as Hidden Markov Model States

We consider two ways to specify the bins, or quadrature points:
a deterministic one, with bins of a fixed size (but varying prob-
ability of occurring), and a stochastic one, with bins of a fixed
probability (but varying size). To simplify the exposition, we
assume that xint,τ(t) is univariate and we write xint,τ(t). For multi-
variate xint,τ(t) we may consider separate bins for each integrated
state dimension d ∈ Dint at time τ(t). We interpret the bins as
states of a latent (first-order) Markov process, which allows us
to give the resulting integration/augmentation scheme an HMM
embedding.

Fixed bins. A straightforward approach to binning is via bins
of a fixed size as it relates to a deterministic approximation of
the likelihood with a quadrature and allows for a natural HMM
interpretation. Discretizing the state space to perform numerical
integration dates back to Kitagawa (1987) and is discussed in
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Zucchini, MacDonald, and Langrock (2016). The state space
Xint of the state to be integrated out is split into B bins of length k
(for integer-valued variables we assume k ∈ N) and for example,
the midpoints of the bins are considered for integration. Then
the values that fall in a given bin are approximated by the value of
the midpoint of that bin. Such an approach is used by Langrock,
MacDonald, and Zucchini (2012b) to efficiently approximate
the likelihood for stochastic volatility models (with continuous
bins) in a classical framework.

For infinitely dimensional states, either discrete or continu-
ous, an “allowed integration range” needs to be specified. For
instance, for a normal variable this means setting a lower and an
upper bound for the integration b0 and bB, while for a Poisson
variable only of an upper bound bB since b0 = 0 in this case. We
divide the resulting domain into intervals:

[b0, . . . , b1)︸ ︷︷ ︸
B1, bin 1

, [b1, . . . , b2)︸ ︷︷ ︸
B2, bin 2

, . . . , [bj−1, . . . , bj)︸ ︷︷ ︸
Bj, bin j

, . . . ,

[bB−1, . . . , bB)︸ ︷︷ ︸
BB, bin B

, bi − bi−1 = k, i = 1, . . . , B.

For continuous variables Bi is simply a continuous interval of
length k, while for discrete variables it consists of k subsequent
integers, for example, for a Poisson variable we have Bi =
{ik, . . . , (i + 1)k} . We specify the midpoints of the bins as
b∗

i = bi−1+bi
2 (for integer-valued variables rounding is required

for even k).
We define {zt}, t ∈ 1, . . . , T∗, as a B-state, discrete-time

(not necessarily homogeneous) Markov chain with transition
probabilities γjk,t = P(zt = k|zt−1 = j) defined as

γjk,t := P(xint,τ(t) ∈ Bk|xint,τ(t−1) ∈ Bj, xaug,a(t−1)).

The transition of zt−1 = j to zt = k is equivalent to xint,τ(t)
belonging to bin k given xint,τ(t−1) was in bin j (and xaug,a(t−1)).
For computationally intensive probabilities we can further
approximate these as γ̃ ∗

jk,t := p(b∗
k |b∗

j , xaug,a(t−1)), which
for discrete variables means P(xint,τ(t) = b∗

k |xint,τ(t−1) =
b∗

j , xaug,a(t−1)). To get the valid probability values we normalize
the transition probabilities as γ ∗

jk,t := γ̃ ∗
jk,t/

∑B
c=1 γ̃ ∗

jc,t . Notice
that this corresponds to treating the values in a bin uniformly.
Alternatively, we can compute the transition probabilities
between bins directly as follows

P(xint,τ(t) ∈ Bk|xint,τ(t−1) ∈ Bj, xaug,a(t−1))

∝
∫
Bk×Bj

p(xint,τ(t)|xint,τ(t−1), xaug,a(t−1))dxint,τ(t−1)dxint,τ(t).

However, such an analytical integration will typically be possible
only in simple cases.

Adaptive bins. An alternative approach is to use adaptive inter-
vals which do not require a bounded integration range. This can
be done by transforming the variable of interest to the [0, 1]
range by applying a cdf. The bins are specified on the [0, 1]
interval and their limits or midpoints are transformed back to
obtain the values of the original variable. In particular, quantiles
of the distribution associated with the variable of interest can be
used.

Suppose xint,τ(t) ∼ p(ϑτ(t)), τ(t) ∈ Tint, where ϑτ(t) is
a vector of possibly time varying parameters, with the cor-
responding cdf F(ϑτ(t)). Consider a vector of B + 1 quan-
tiles q = [q0, q2, . . . , qB]. The corresponding B mid-quantiles
q∗ = [q∗

1, q∗
2, . . . , q∗

B] are given by q∗
i = qi−1+qi

2 (e.g., q =
[0.0, 0.1, 0.2, . . . , 1.0] and q∗ = [0.05, 0.15, . . . , 0.95]). For F(ϑt)
continuous and strictly monotonically increasing the bin mid-
points at time t are determined by the mid-quantiles as b∗

i =
F−1 (

q∗
i |ϑτ(t)

)
. For discrete variables one can either use the

generalized inverse distribution function, or use a continuous
approximation to the associated discrete distribution.

4.2. Hidden Markov Model Likelihood

Having specified the states of the underlying Markov chain in
the previous section, we aim to use them to approximate the
joint semi-complete data likelihood (7) by embedding it into an
HMM form (below, to ease the notation, we skip θ in condition-
ing). We relate each state of the hidden Markov process with
the relevant augmented states and observations. This imposes
a time structure on the semi-complete data likelihood integral
with respect to the “integration time” and thus allows us to cast
it into a likelihood of an HMM.

Motivating example. Consider the state specification from Fig-
ure 2(a) to which we add conditionally independent observa-
tions to result in an SSM (see Appendix C.1, supplementary
materials for a graphical illustration and more details). We
specify xaug = {x1,t}T

t=0 =: x1 and xint = {x2,t}T
t=0 =: x2,

which corresponds to the “horizontal” integration. Hence, we
put Tint = Taug = {0, 1, . . . , T}, τ(t) = t, a(t) = t and
o(t) = t. Using the temporal dependence in this system, the
semi-complete data likelihood p(y, xaug) can be expressed as

p(y, xaug) = p(x1,0)
T∏

t=1
p(yt|x1,t)p(x1,t|x1,t−1)

= p(x1,0)
T∗∏

t=1
p(yo(t)|x1,a(t))p(x1,a(t)|x1,a(t−1)),

which is not tractable without integrating out x2. Hence, we
marginalize over x2 and approximate the resulting integral using
a quadrature with B bins Bk, k = 1, . . . , B, as

p(y, xaug) =
∫

· · ·
∫

p(x1,0)p(x2,0)
T∗∏

t=1
p(yo(t)|x1,a(t), x2,τ(t))

×p(x1,a(t)|x1,a(t−1), x2,τ(t−1))

p(x2,τ(t)|x1,a(t−1), x2,τ(t−1))

dx2,τ(T∗) . . . dx2,τ(1) (11)

≈
B∑

k0=1
· · ·

B∑
kT∗=1

p(x1,0)p(x2,0 ∈ Bk0)

T∗∏
t=1

p(yo(t)|x1,a(t), x2,τ(t) ∈ Bkt )

×p(x1,a(t)|x1,a(t−1), x2,τ(t−1) ∈ Bkt−1)

p(x2,τ(t) ∈ Bkt |x1,a(t−1), x2,τ(t−1) ∈ Bkt−1).
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The above approximation has a natural interpretation in terms
of HMM by associating the events x2,τ(t) ∈ Bk with states of a
hidden Markov process on B states. The transition matrix of this
process is

	t = [P(x2,τ(t) ∈ Bk|x1,a(t−1), x2,τ(t−1) ∈ Bl)]k,l=1,...,B, (12)

for t ∈ 1, 2, . . . , T∗. We specify two further matrices for the
“augmented data”: Pt for the augmented states xaug and Qt for
the real observations y, as follows

Pt = diag
(
p(x1,a(t)|x1,a(t−1), x2,τ(t−1) ∈ Bl)

)
l=1,...,B , (13)

Qt = diag
(
p(yo(t)|x1,a(t), x2,τ(t) ∈ Bk)

)
k=1,...,B . (14)

This is different compared to standard HMMs in which only
the matrix for y is used. Notice that the conditioning in (12)
and (13) is with respect to the previous realizations of the states,
whilst for the observations in (14) it is with respect to the current
states. Finally, the quadrature based approximation to the semi-
complete data likelihood (11) can be expressed as

p̂B(y, xaug) = p(x1,0)u0

⎛
⎝ T∗∏

t=1
Pt	tQt

⎞
⎠ 1, (15)

where u0 = (P(x2,0 ∈ B1), . . . , P(x2,0 ∈ BB)) is the initial
distribution of the Markov chain.

General formulation. The generic matrices of the HMM-based
approximation are

	t = [P(xint,τ(t) ∈ Bk|xint,τ(t−1) ∈ Bl, xaug,a(t−1))]k,l=1,...,B,
Pt = diag

(
p(xaug,a(t)|xint,τ(t−1) ∈ Bl), xaug,a(t−1)

)
l=1,...,B ,

Qt = diag
(
p(yo(t)|xint,τ(t) ∈ Bk, xaug,a(t))

)
k=1,...,B ,

for t ∈ 1, 2, . . . , T∗ and lead to the following form of the HMM
approximation

p̂B(y, xaug) = p(x1,0)u0Q0

⎛
⎝ T∗∏

t=1
Pt	tQt

⎞
⎠ 1, (16)

which differs from (15) by including Q0 := diag
(
p(yo(0)|xint,0

∈ B∗
k )

)
k=1,...,B, which allows for a dependence of some observa-

tions on the initial state of the Markov process. The SV model
example in Appendix A.4.3, supplementary materials demon-
strates the role of Q0.

5. Applications

We assess the performance of the proposed SCDA method in
two case studies with distinctively different features resulting
in different integration schemes. The first application relates to
the unobserved component stochastic volatility model (UCSV)2

proposed by Stock and Watson (2007), which has become a
popular tool for inflation forecasting, see Chan (2013), Chan
(2018), Li and Koopman (2021). We also consider a modifi-
cation of the UCSV model—a time-varying parameter model

2To provide more intuition behind the UCSV example, we present in
Appendix A, supplementary materials an additional conceptual exercise
based on the basic SV model, which is a building block of the UCSV model.

introduced in Section 3.3—with univariate state vector and SV
for the observation errors, which can be fitted using off-the-
shelf R package shrinkTVP (Knaus et al. 2021). The second
application involves the dataset on the Northern lapwing (Vanel-
lus vanellus), which has been extensively analyzed in statistical
ecology, see Besbeas et al. (2002), Brooks, King, and Morgan
(2004), or King et al. (2008). Importantly, in the lapwing model
the two latent states follow discrete distributions. We conclude
this section with some guidance relating to the practical choices
required for implementing the SCDA approach to state space
models in general.

We are interested in comparing the performance of the stan-
dard DA approach with that of SCDA. For comparability, for
each method we use a “vanilla” RW-MH (single-update) algo-
rithm for estimation. We tune each sampler so that the accep-
tance rates for each element of θ and the average acceptance
rates for each of the imputed states are “reasonable,” that is, 20%–
40% (Gelman, Roberts, and Gilks 1996; Roberts and Rosenthal
2001). We note, however, that the idea of SCDA does not rely on
any particular MCMC updating scheme but on the specification
of the auxiliary variables. It is the choice of the analyst what
specific sampler is used for updating these auxiliary variables.
We are consistent in using the same RW-MH algorithm to con-
sider the relative performance of the DA and SCDA algorithms,
but note that one may use, for example, Hamiltonian Monte
Carlo (HMC, Neal 2011) or the No-U-Turn Sampler (NUTS,
Hoffman and Gelman 2014) for continuous states. The pro-
posed methodology can be also implemented using probabilistic
programming languages such as Stan (Stan Development Team
2019) or JAGS (Plummer 2017).

5.1. Example: Econometric Model

We consider the following specification of the UCSV model, for
t = 1, . . . , T,

yt = τt + exp(ht/2)ε
y
t , ht = ht−1 +

√
ω2

hε
h
t ,

τt = τt−1 + exp(gt/2)ετ
t , gt = gt−1 +

√
ω2

gε
g
t , (17)

τ1 ∼ N
(
mτ , Vτ exp(g0)

)
, εx

t
iid∼ N (0, 1), x ∈ {y, τ , h, g},

where the inflation rate, yt , is decomposed into a random walk
trend component, τt , and a transitory noise component ε

y
t , each

of which is subject to stochastic volatility. Log-volatilites ht and
gt have a random walk specification.3 The dynamics in (17)
follows the specification of Stock and Watson (2007), with the
only exception that we allow for distinct volatility-of-volatility
coefficients for ht and gt , that is, ω2

h and ω2
g . This parametri-

sation choice, together with putting priors on the initial log-
volatility values, h0 and g0, is similar to the one considered
by Chan (2018). However, Chan (2018) puts a normal prior
on the standard deviations ωh and ωg , while we adopt a more
standard inverse-gamma priors on variances (see, e.g., Chan
2013; Kroese and Chan 2013). In sum, we adopt the following

3As pointed out by Chan (2018), a random walk specification is popular in
macroeconometrics, while an alternative modeling approach of adopting
a stationary autoregressive process is typical for the financial literature.
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Figure 3. UCSV model: U.S. quarterly CPI (left) and CPI inflation (right) from 1960Q1 to 2013Q4.

prior specification

h0 ∼ N (mh, Vh0), g0 ∼ N (mg , Vg0), (18)
ω2

h ∼ IG(αh, λh), ω2
g ∼ IG(αg , λg), (19)

with mh = mg = 0, Vh0 = Vg0 = 10, αh = αg = 10, λh =
λg = 0.22(αh − 1) and we set Vτ = Vh = Vg = 10, mτ = 0.
We collect the model parameters into θ = {mh, mg , ωh, ωg}T .

The estimation of the UCSV model is challenging due to the
intractable likelihood

p(y|θ) =
∫

p(y, τ , h, g|θ)dτdhdg,

where τ = {τt}T
t=1, h = {ht}T

t=1, g = {gt}T
t=1. In the frequentist

literature, Li and Koopman (2021) propose to estimate parame-
ters of the UCSV model using a simulated maximum likelihood
method based on the Kalman filter. However, Bayesian MCMC
methods seem to be a more popular tool to this end, see Stock
and Watson (2007), Chan (2013), and Shephard (2015). In par-
ticular, imputing the hidden states in Bayesian DA leads to the
complete data likelihood with a closed form:

p(y, τ , h, g) = p(y|τ , h)p(τ |g)p(g)p(h)

= p(τ1)p(g1)p(h1)
T∏

t=2
p(yt|τt , ht)

p(τt|τt−1, gt)p(gt|gt−1)p(ht|ht−1).

However, standard DA often leads to poorly mixing chains.

5.1.1. Dependence Structure and Semi-Complete Data
Likelihood

The UCSV model concerns three states on the real line, all
of which follow random walks. The sampling inefficiency in
this context originates from a high persistence of the latent
processes.4 In order to break this dependence, we propose two
schemes based on the model dependence structure (illustrated
in Online Appendix B.1, supplementary materials). We start
with integrating out g2T+1, the permanent log-volatility in odd
time periods, and imputing g2T , the permanent log-volatility
in even time periods, together with h and τ (Scheme 1). This
corresponds to naive vertical integration from Section 3.3, with
xint = g2T+1 and xaug = g2T , as integration is applied to one
state only. This simplicity is useful for illustrative purposes as
well as demonstrates a general heuristic that in practice it may

4The random walks may be regarded as a limiting case of AR(1) process, with
the persistence coefficient equal to one.

be advisable to start with a simple scheme and gradually extend
it toward more complex schemes (see Section 5.3 for a discus-
sion of practical heuristics for SCDA). Note that gt feeds into
another latent state, that is, the trend component τt , via which
it affects the mean of yt . Thus, next we include the transitory
log-volatility ht , which drives the variance not the mean of yt ,
in the integration scheme. This results in integrating out h2T as
well as g2T+1 (Scheme 2), which is another instance of vertical
integration, with xint = {g2T+1, h2T} and xaug = {g2T , h2T+1}
(see Section 3.3). Note that in both schemes the semi-complete
data likelihood (7) can be represented as a product of one
dimensional integrals,5 which would not be the case in Scheme
2 if we integrated same period gt and ht (that would result in
two-dimensional integrals).

5.1.2. Application
We consider ỹt , the quarterly consumer price indices (CPI)
for the United States, from 1960Q1 to 2013Q4, also used by
Chan (2018), which we transform to annualized inflation rate
yt = 400 log(ỹt/ỹt−1). Figure 3 illustrates the data. Given the
independence of both log-volatilities, h and g, we expect Scheme
2 to be more efficient than Scheme 1 and indeed, our pilot study
confirmed this conjecture. Thus, below we focus on results for
Scheme 2.

We consider 10 independent runs of Scheme 2 and full DA
(with random initialization), which we run with 20,000 draws
after a burn-in of 10,000. For comparison, we also include results
for a DA run with much more draws (2,000,000) and a longer
burn-in period (500,000), denoted “DA long.” For SCDA we
investigate 10, 15, . . . , 30 adaptive bins and 20, 25, . . . , 40 fixed
bins. Figure 4 illustrates parameter posterior means. We observe
that all methods deliver means close to those from DA long,
however, most variants of SDCA lead to much more precise
estimates compared with DA with the same number of draws.
Interestingly, the number of bins does not seem to change the
reliability of SCDA too much, especially for fixed bins: 20 fixed
bins give the same range of posterior means across 10 runs as 40
fixed bins. This is an encouraging result as it demonstrates the
stability of the proposed numerical approximations as well as
shows that as few as 20 fixed bins (or even 10 adaptive bins) are
sufficient to accurately estimate the parameters. In Appendix F.2,
supplementary materials we quantitatively summarize Figure 4

5We provide technical details of the semi-complete data likelihood formu-
lations for both schemes in Appendix B.1, supplementary materials where
we also discuss the HMM approximations based on fixed and adaptive bins
(introduced in Section 4.1).
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Figure 4. UCSV model: parameter posterior means from 10 replications for SCDA Scheme 2 and DA together with the benchmark from DA long.

Figure 5. UCSV model: state posterior means (solid lines) averaged over 10 replications for SCDA Scheme 2 and DA, ± their standard deviations (dashed lines). Left column:
adaptive bins, right column: fixed bins.

as well as provide its “quantile counterparts” (for 5%, 25%, 75%,
and 95% quantiles) which lead to similar conclusions for the
quantiles as for the mean. A similar pattern can be observed for
the state posterior means, as shown in Figure 5. As expected,
on average SCDA and DA lead to very similar posterior mean,
but SCDA delivers more precise estimates (which is especially
visible for the hard-to-estimate log-volatilities h and g).

Figure 6 presents ESSs for parameters for 10 replications of
SCDA Scheme 2 and DA, while Table 1 reports medians of
those ESSs together with computing times of each algorithm. We

observe that the SCDA approach leads to improved mixing (up
to over three times higher ESSs) for all parameters. Moreover,
the ESS values for DA often happen to be very low, while it is
rare for SCDA to deliver such low ESSs.

We conclude that the SCDA algorithm leads to improved
ESS values compared to the full DA algorithm, however, at the
cost of an increased computing time. However, SCDA brings an
additional advantage in terms of typically more precise param-
eter and state estimates. We note that despite its relatively com-
plex dependence structure, the UCSV model is computationally
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Figure 6. UCSV model: ESS for the parameters.

Table 1. UCSV model: ESS for parameters and computing times (in seconds)—medians for 10 replications.

ESS Adapt10 Adapt15 Adapt20 Adapt25 Adapt30 Fix20 Fix25 Fix30 Fix35 Fix40 DA

h0 344 302 299 359 209 348 414 354 314 395 145
g0 87 56 74 63 62 77 76 76 73 88 30
ω2

h 164 146 204 160 161 209 199 234 240 229 62
ω2

g 98 87 94 96 117 87 120 140 112 107 53
Time 71 76 81 86 91 69 73 76 80 83 11

pretty quick due to the univariate normal distributions present
in its specification. As we observe in the following study, non-
normal distributions, and in particular discrete distributions
that tend to be much more computationally expensive, can lead
to SCDA being computationally advantageous over DA and
hence to much more pronounces efficiency gains.

5.1.3. TVP Model and Comparison with Off-the-Shelf
Packages

It would be of interest to compare the performance of the SCDA
algorithm with that of (optimised) off-the-shelf packages. How-
ever, to the best of our knowledge, there are no available pack-
ages for Bayesian estimation of the previous UCSV model (17).
However, if we simplify the model we can use the shrinkTVP
R package (Knaus et al. 2021), which fits the class of time-varying
parameter (TVP) models. In particular, we replace the stochastic
volatility for the trend process τt with a homoscedastic noise,
model the stochastic volatility of inflation, ht , as an AR(1)
process (instead of a random walk) and use different priors.

Time varying parameter model. The resulting model has the
following specification, for t = 1, . . . , T,

yt = τt + exp(ht/2)ε
y
t , εx

t
iid∼ N (0, 1), x ∈ {y, τ , h},

τt = τt−1 +
√

ω2
τ ε

τ
t , ht = μ + φ(ht−1 − μ) +

√
ω2

hε
h
t

τ0 ∼ N
(
τ̄ , ω2

τ

)
, h0 ∼ N

(
μ,

ω2
h

1 − φ2

)
, (20)

with the following prior specification for the mean of the initial
trend value and the standard deviation of the innovations,

τ̄ |λ2
B ∼ N

(
0,

2
λ2

B

)
, ωτ |κ2

B ∼ N
(

0,
2
κ2

B

)
,

which are a special case of the normal-gamma-gamma prior
(Cadonna, Frühwirth-Schnatter, and Knaus 2020) known as
ridge regression. Here, κ2

B and λ2
B are shrinkage parameters, as

the larger their values the stronger the “pull” toward zero of the
corresponding parameters. In our experiments we set both κ2

B
and λ2

B to 0.02, which corresponds to relatively vague priors.
For the parameters of the SV process ht we adopt priors from
Kastner and Frühwirth-Schnatter (2014) and Knaus et al. (2021)
given as

μ ∼ N (bμ, Bμ),
φ + 1

2
∼ B(αφ , βφ),

ω2
h ∼ G

(
1
2

,
1

2Bωh

)
= Bωh · χ2

1 ,

with bμ = 0, Bμ = 1, αφ = 5, βφ = 1.5, Bωh = 1.
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Figure 7. TVP model: ESS for the parameters.

Alternative packages. shrinkTVP implements a DA algo-
rithm using Gibbs sampling with MH steps and applies
a number of specialist algorithms to improve mixing. In
particular, this includes the ancillarity-sufficiency interweaving
strategy (ASIS) of Kastner and Frühwirth-Schnatter (2014) or
the band and sparse matrix algorithm for linear Gaussian SSMs
of McCausland, Miller, and Pelletier (2011) for jointly sampling
τt , t = 0, . . . , T. In addition, we implement a standard DA
algorithm using the R package rjags, which is based on the
JAGS (Plummer 2017) probabilistic programming language.

SCDA scheme. We specify SCDA by setting xint = {h2T ,
τ 2T+1}. Alternating the time periods for the integrated ht and
τt states allows us to avoid double integrals in the algorithm
as the integrals associated with h2T and τ 2T+1 disjoint. This
can be observed since the integrals associated with ht and τt
are dependent only via the likelihood term p(yt|τt , ht) so that
integrating same-t ht and τt results in double integrals; while
integrating out alternating t (i.e., h(t2) and τ(2t + 1)) leads to
single integrals only.

Results. The results below are based 10 algorithm replications,
each with 20,000 draws after 10,000 draws for burn-in (or
adaptation for rjags). For SCDA we consider 20, 25, and 30
fixed bins (10 and 15 fixed bins performed poorly, as for the
previous example) and 5, 10, 15, 20, 25, and 30 adaptive bins.
The comparisons of computational time are less informative
due to the differences in computational packages used: R for
the two alternative packages with the sampler in shrinkTVP
coded in C++, and MATLAB, so that we focus on the absolute
effective sample size for comparisons. However, to give some

idea of computing times,6 shrinkTVP took around 10 sec,
JAGS 20 sec, and SCDA between 23 and 45 sec dependent on
adaptive/fixed and number of bins.

Figures 7 and 8 present ESSs for the parameters and states,
respectively. For the latter each boxplot is based on 10 time
series of ESSs for the corresponding state (even τt or odd ht);
we provide ESSs for a selection of individual τts and hts in
Appendix F.3, supplementary materials. While we would expect
the specialist shrinkTVP package with model-specific sam-
pling techniques to perform much better in this specific context
than the proposed general SCDA algorithm, we note that the
sampling efficiency of SCDA even with vanilla RW-MH updates
is relatively comparable with that of shrinkTVP in that the
ESSs are of the same order; and very similar to rjags that
uses a slice-sampling algorithm. Finally, we note that sampling
efficiency of SCDA does not change substantially with the num-
ber of bins used, demonstrating the general stability of the
algorithm.

5.2. Example: Ecological Model

We consider y = (y1, . . . , yT), a time series of observations
relating to census data (abundance index) of adult British lap-
wings (Vanellus vanellus, see Appendix E, supplementary mate-
rials for details). The lapwings dataset plays an important role in
statistical ecology where it has frequently served as an illustra-
tion (see Besbeas et al. 2002; King 2011).

6On a standard personal laptop, with i7 Intel(R) Core(TM), 2.80 GHz, 16 GB
RAM.
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Figure 8. TVP model: ESS for the states. Left—even τt , right—odd ht .

The counts are only estimates of the true unknown popula-
tion size, which is assumed to change over time according to
a first order Markov process. The latent population is related
to two times series: for first-years and adults, denoted N1 =
(N1,1, . . . , N1,T)T and Na = (Na,1, . . . , Na,T)T , respectively.
Hence, the latent state is given by x = (N1T , NaT)T . Following
Besbeas et al. (2002) we model the count data via the following
SSM

yt|Na,t , θ ∼ N (Na,t , σ 2
y ), t = 1, . . . , T, (21)

N1,t|Na,t−1, θ ∼ Poisson(Na,t−1ρt−1φ1,t−1), (22)
Na,t|N1,t−1, Na,t−1, θ ∼ Bin

(
(N1,t−1 + Na,t−1), φa,t−1

)
, (23)

where N1,0 ∼ Neg–bin(r1,0, p1,0) and Na,0 ∼ Neg–bin
(ra,0, pa,0). The model is parameterized by the time-varying
productivity rate ρt , and time-varying survival rates φ1,t and
φa,t , for first-years and adults, respectively, while ai,0 and pi,0
are hyperparameters of the prior distribution on the initial state
value Ni,0, i ∈ {1, a}.

We let the SMM parameters follow regressions specified by
Besbeas et al. (2002)

logitφ1,t = α1 + β1ft , logitφa,t = αa + βaft ,
log ρt = αρ + βρ t̃,

where t̃ the normalized time index and ft denotes the nor-
malized value of frost days fdays in year t, see Appendix E,
supplementary materials for the explanation of this covariate.

To improve the estimation, Besbeas et al. (2002) consider an
integrated population model combining the census data with
ring-recovery data (see Appendix E, supplementary materi-
als for the formula of the additional regression parameterized
by αλ and βλ and further details). We refer to Besbeas et al.
(2002) for a more detailed description of the integrated model.
The set of model parameters is collected in a vector θ =
(α1, αa, αρ , αλ, β1, βa, βρ , βλ, σ 2

y )T .
Finally, we set independent vague N (0, 100) priors for the

regression coefficients αi and βi, i ∈ {1, a, ρ, λ} and 	−1(ay, by)
on σ 2

y with ay = 0.001 = by. For the initial states, we set r1,0 = 4
and p1,0 = 0.98 so that the prior mean and variance of first-year
birds is approximately 200 and 10,000, respectively; and ra,0 =
111 and pa,0 = 0.9, so that the prior mean and variance of adults
is approximately 1000 and 10,000, respectively.

System (21)–(23) is non-Gaussian and nonlinear with the
associated likelihood unavailable in a closed form. The standard
vanilla DA approach leads to poorly mixing MCMC algorithms
as demonstrated by King (2011). To this end, we first consider
the dependence structure in the model to determine sensible xint
and xaug .

The two-dimensional state (N1,t , Na,t)T follows the first-
order Markov process with a nontrivial transition kernel. First-
year birds in t only feed into adults in t + 1, however, adults
in t contribute to both the number of first-years and adults in
t + 1 as well as to the observed yt . This suggests that reducing
the strength of the dependence structure can be obtained by
integrating out N1 while imputing Na. This corresponds to the
horizontal integration scheme with xint = N1 and xaug = Na.
The resulting modified dependence structure is presented in
Figure 9. Marginalizing over N1 simplifies the analysis as only
Na need to be considered and they now follow a second-order
Markov process. A similar second order structure in this context
has also been noted by Besbeas and Morgan (2019).

5.2.1. Hidden Markov Model Approximation
The semi-complete data likelihood for the augmented data
(yT , NaT)T is

p(y, Na|θ) = p(y|Na, θ)p(Na|θ), (24)

which is still intractable, thus, we approximate it using the HMM
embedding (16). We provide the derivation details in Appendix
B.2, supplementary materials, where we show that the HMM
approximation to the SCDL (24) can be expressed as

p(y, Na|θ) = p(y|Na)p(Na) = u0p(Na,0)

( T∏
t=1

Pt	tQt

)
1,

where u0 = [p(N1,0 = 0), . . . , p(N1,0 = N∗)] is the (1 × N∗)
row vector of the initial state distribution; Pt is a diagonal
matrix with pk,t elements on the diagonal, such that pk,t =
p(Na,t|Na,t−1, N1,t−1 = k) denoting the conditional pmf of Na,t
given N1,t−1 = k and Na,t−1; 	t = [γlk,t]N∗

l,k=1 is a latent state
transition matrix with transition probabilities γlk,t = P(N1,t =
k|Na,t−1); Qt = p(yt|Na,t)I is the observation matrix.=; and
1 denotes the (N∗ × 1) column vector with each element
equal to 1.
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Figure 9. Lapwing data: combining DA and HMM structure. Diamonds—the imputed nodes, squares—the data, circles—the unknown variables. Integrating out N1 leads
to a second order HMM on Na . Dashed lines for the relations from the imputed states. See Section 4.2 for the general explanation of the notation and Section 5.2.1 for the
details specific to the lapwings case.

Table 2. Lapwing data: absolute (in seconds) and relative (wrt DA) computing times.

Method DA Adapt10 Adapt20 Adapt30 Fixed10 Fixed20 Fixed30 Exact

Absolute time 1203 978 1067 1024 1022 1060 1135 2855
Relative time 1.00 0.81 0.89 0.85 0.85 0.88 0.94 2.37

5.2.2. Results
We compare the performance of the standard DA approach, in
which we impute θ , N1 and Na, with that of the SCDA, in which
we impute θ and Na. For comparability we use a “vanilla” MH
RW algorithm for the estimation of the integrated model, with
discrete uniform updates for the states and normal updates for
the regression coefficients. We use a Gibbs update σ 2

y |Na ∼
	−1

(
ay + T/2, by + ∑T

t=1(yt − Na,t)2/2
)

for the observation
variance. For the SCDA we first consider the “exact” integration
used in the derivations above, in which the only influence on the
posterior is the upper limit which we set bB = 679. This choice
of the upper bound is based on the results for first-years from
previous studies. We further consider a number of approximate
schemes based on fixed and adaptive intervals (with 10, 20,
and 30 bins in each case). For adaptive bins we use a normal
approximation to the Poisson distribution. Each time we use
100,000 draws after a burn-in of 10,000.

Table 2 summaries computation time for each scheme. As
expected, the exact method is the slowest (2.5 times than the
full DA approach) as each integration is based on summing
680 elements. All the approximate schemes are faster (10%–

20%) than the DA approach due to their efficient implemen-
tation based on vectorized computations with relatively few
elements to be summed every iteration. Table 3 presents the
results for the regression parameters in terms of posterior
means and standard deviations as well as ESSs and ESSs per
second, for DA and selected SDCA approaches. Appendix
F.1, supplementary materials provides a comparison for all
elements of θ and selected elements of Na between all the
methods.

The results demonstrate the efficiency of the proposed SCDA
approach: all the SCDA-based schemes, except the one based on
10 fixed bins, outperform the full DA approach by delivering
much higher (up to four times) ESSs and ESSs/sec. This is
illustrated in Figure 10, which shows the autocorrelation (ACF)
plots for the SSM parameters. We refer to Appendix F.1, supple-
mentary materials for the ACF plots for selected elements of Na.

5.3. Practical Issues

Here we briefly discuss some of the practical issues that need to
be considered when implementing an SCDA approach.
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Table 3. Lapwing data: SSM regression parameter posterior means, standard deviations and ESSs and ESS/s (highest in bold).

Method α1 αa αρ β1 βa βρ

DA Mean 0.547 1.574 −1.189 −0.164 −0.240 −0.348
(Std) (0.068) (0.071) (0.091) (0.062) (0.039) (0.043)

ESS 685 124 112 1050 389 106
[1204 s] ESS/s 0.57 0.10 0.09 0.87 0.32 0.09
Adapt10 Mean 0.547 1.564 −1.180 −0.163 −0.239 −0.350

(Std) (0.068) (0.070) (0.092) (0.061) (0.040) (0.040)

ESS 1490 390 316 2777 527 126
[978 s] ESS/s 1.52 0.40 0.32 2.84 0.54 0.13
Fixed10 Mean 0.512 1.441 −1.044 −0.207 −0.205 −0.348

(Std) (0.070) (0.055) (0.063) (0.050) (0.039) (0.022)

ESS 942 34 37 181 105 282
[1022 s] ESS/s 0.92 0.03 0.03 0.18 0.10 0.28
Fixed30 Mean 0.545 1.562 −1.170 −0.162 −0.240 −0.342

(Std) (0.069) (0.073) (0.095) (0.061) (0.039) (0.040)

ESS 1758 439 329 2873 502 208
[1136 s] ESS/s 1.55 0.39 0.29 2.53 0.44 0.18

NOTE: Computing times in square brackets.

Figure 10. Lapwing data: ACF plots for the SSM regression parameters.

What states to integrate? In many cases, practitioners may have
an awareness of what states are “problematic” in a given applica-
tion. For instance, it is well known that stochastic volatilities are
characterised by high persistence, which adversely affects mix-
ing. In such circumstances such poorly mixing states provide
natural candidates for integrating. Alternatively, there might be
“double latent” states, such as gt in the UCSV model or first-
years in the Lapwings example, that do not directly feed into the
observation process, affecting it only indirectly via other latent
states. Thus, integrating these “double latent” states might be
more convenient as opposed to the states that the observations
are a direct function of. Further, we note that in such circum-
stances, it may also be that these latter states are of more interest

(as observations are made directly on these), and imputing these
states provides a direct mechanism for obtaining their associated
posterior distribution.

In general, and as discussed in the UCSV example (Sec-
tion 5.1), simple schemes will often provide a good starting point
for developing more complex schemes. For instance, for the
TVP case one could start with two independent “naive” schemes
with either τt ’s or ht ’s being integrated and then combine them
into an τt-ht scheme. Further, we note that it will typically be
more efficient to implement a scheme with one-dimensional
integrals. For a broad class of models with independent states,
such as the general TVP model (9)–(10), the suggestions from
Section 3.3 also apply.
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Number and type of bins. In theory, and also observed in
practice for the examples considered, adaptive bins are superior
to fixed bins, with the latter also requiring the user to specify
the integration range and are more challenging to efficiently
accommodate states with nonstationary features (e.g., periods of
high and low volatility). However, for certain problems it might
be easier to specify fixed bins due to the underlying process spec-
ification. For instance, the first-years in the lapwings example
follow a Poisson distribution, bounded from below at zero; in
addition the upper bound on the integration range might be
deduced from previous population studies. Thus, the specific
state space model should be taken into consideration, with the
general tradeoff between a larger number of fixed bins (if the
range of values is not too large) or a smaller number of adaptive
bins. For our applications, relatively few bins were generally
required to obtain accurate results, (e.g., 10–20 bins sufficing),
and thus, we recommend initially starting with a small number
of bins and to check the sensitivity by increasing these to check
for consistency.

6. Discussion

We have presented a new estimation method for state space
models using semi-complete data augmentation. The idea can,
in general, be combined with different updating schemes to pro-
vide more efficient MCMC sampling algorithms, although for
the purposes of this article we simply focus on “vanilla” updating
algorithms. The main idea behind the approach is to combine
data augmentation with numerical integration, where the latter
aims at reducing the dependence between the imputed auxiliary
variables. The concept relates to general Rao-Blackwellization
methods, however, we do not require the resulting conditional
distribution (given the imputed states) to be analytically inte-
grable, nor the imputed auxiliary variables to be sufficient statis-
tics for the marginalized states.

We assume that the system states are ordered, but may be
discrete or continuous in nature. The corresponding integration
schemes for these states are based on the insights from hidden
Markov models in the sense that we specify new transition prob-
abilities between redefined states, to be numerically integrated
out, conditionally on the auxiliary variables. Further efficiency
gains can be obtained by “binning.” This results in an approx-
imation to the semi-complete data likelihood and we note that
for continuous states such an approximation is a natural starting
point for our approach (as in principle for any MC based anal-
ysis). We consider two types of “binning”: “fixed bins” based on
a prespecified grid and “adaptive bins” based on for example,
quantiles of the relevant distribution. The latter removes the
problem of specifying the “essential domain” required for fixed
bins (see Kitagawa 1987; Langrock, MacDonald, and Zucchini
2012b). Adaptive bins are also more suited for problems with
highly varying integration ranges, such as the class of SV models,
for which fixed bins are unlikely to be efficient (see Sandmann
and Koopman 1998). In our examples a similar accuracy was
achieved by using fewer adaptive bins than fixed bins. A more
general case would allow for K unordered discrete states. How-
ever, we would expect in these cases K would be most likely
be small, allowing us to simply calculate the explicit observed

data likelihood. If this is not the case, then, an additional step
of how to combine the states into bins is necessary. We note
that in this case some multivariate classification approach could
be used to cluster the groups via some training data, such as k-
means clustering. However, this could raise the question of the
interpretability of the clustered states.

We describe two empirical studies applying the SCDA
approach compared to the general “vanilla” MCMC algorithm,
before comparing a basic SCDA algorithm with a tailored
R package for a TPV model. For the lapwings data model
efficiency gains are observed in both the higher effective
sample sizes compared to the standard DA technique and
computational speed. For the UCSV models, SCDA does again
boost the mixing, but at the cost of an increased computing
time. However, there are a number of issues that will have
a major impact on computing times (and in particular ESS
per second) including for example, advanced programming
techniques such as parallelization or coding in C/C++ (but this
has not been the main focus of the article). In addition, and as
expected, bespoke algorithms designed for specific models will
generally be optimal for the designed set of models. However,
the SCDA approach has potential for being incorporated into
such algorithms, and using the bespoke updating algorithms on
the model parameters to improve performance.

The performance of the algorithm will, in general, be depen-
dent on many factors, including, for example, the posterior cor-
relation/structure of the parameters and system states, complex-
ity of the numerical integration scheme, distributions specified
within the model and MCMC proposal distributions. In general,
efficient algorithms become more important when standard
techniques become infeasible or cumbersome. We note that the
coding of our SCDA approach is adaptable from the full DA
approach, which is a natural first approach taken for many state-
space-type models. Even moderate computational savings (on
the order of say, 2–4 times faster) will be magnified when the
models are required to be fitted to many multiple datasets, which
is becoming increasingly common due to the availability of data,
for example, ecological organisations and charities (e.g., the
British Trust for Ornithology and Butterfly Conservation Trust)
collect data on many hundreds of species. Further, increasing
the number of latent states and/or the length of the time series
of these datasets will also likely increase the correlation between
the model parameters and auto-correlation of the MCMC algo-
rithm, which influence the potential computational savings.

The split of the latent states into “auxiliary” and “integrated”
variables is model-dependent and should be specified in such
a way that the algorithm is efficient. This choice is not unique
and multiple approaches may be applied—the efficiency of these
will dependent on both the model and data. On the one hand,
the imputed states aim to have reduced correlation, to improve
mixing of MCMC algorithms; on the other hand, the numerical
integration is over a very low number of dimensions, which in
many cases is feasible due to conditional independence of the
integration problems. To identify such conditionally indepen-
dent latent states it can be useful to investigate the underlying
graphical structure of the model. In general, high dimensional
integration remains a challenging problem, which we leave for
further research, noting that quasi Monte Carlo could be useful
in this context.
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Finally, and as previously mentioned, application-specific,
off-the-shelf packages such as shrinkTVP (Knaus et al. 2021)
are likely to provide, at least in the first instance, an efficient
model-fitting choice. However, such packages are available only
for a number of specific predefined models. Deviations from
the built-in specifications often require either shoe-horning the
model into such a package (often to the detriment of the appli-
cation), or resorting to general sampling techniques, typically
involving full data augmentation. In contrast, general model-
fitting algorithms such as SCDA are easily adaptable between
different model specifications, and such an adaptation becomes
essentially trivial when the underlying dependence structure is
preserved. Further, the methodological framework presented
within this approach can incorporate additional tools or tech-
niques that have been developed for other model-specific algo-
rithms, in terms of updating strategies applied to the (static)
model parameters and/or auxiliary variables, leading to more
tailored and efficient updating algorithms.

The proposed methodology naturally leads to several further
topics for further research. First, we aim to investigate bounds
of approximation errors in order to quantify the demonstrated
higher usefulness of adaptive bins compared to fixed bins. Sec-
ond, adopting automated methods to identify the correlation
structure would make applying the SCDA approach to new
models easier and potentially more efficient, especially if the
model at hand is complex and/or there are no “natural candi-
dates” for the integrated states. Third, we expect parallelization
methods to reduce the increased computing times, since many
of the imputed states will be conditionally independent of each
other. Finally, providing an accompanying SCDA general pack-
age is an appealing idea, but beyond the scope of this article.

Supplementary Materials

Online Appendix (SCDA_OnlineSupplement.pdf, pdf file) provides
additional examples and results, technical details and a description
of the lapwings dataset.

Codes (SCDA_Codes.zip, zip file) contain MATLAB and R scripts, func-
tions and data used for the empirical applications (explained in the
corresponding README.txt files).
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