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Abstract

We propose a novel efficient model-fitting algorithm for state space models. State
space models are an intuitive and flexible class of models, frequently used due to
the combination of their natural separation of the different mechanisms acting on
the system of interest: the latent underlying system process; and the observation
process. This flexibility, however, often comes at the price of more complicated
model-fitting algorithms due to the associated analytically intractable likelihood. For
the general case a Bayesian data augmentation approach is often employed, where
the true unknown states are treated as auxiliary variables and imputed within the
MCMC algorithm. However, standard “vanilla” MCMC algorithms may perform very
poorly due to high correlation between the imputed states and/or parameters. The
proposed method addresses the inefficiencies of traditional approaches by combining
data augmentation with numerical integration in a Bayesian hybrid approach. This
approach permits the use of standard “vanilla” updating algorithms that perform
considerably better than the traditional approach in terms of improved mixing and
lower autocorrelation. We apply our semi-complete data augmentation algorithm to
different application areas and models, leading to distinct implementation schemes
and demonstrating improved efficiency.

Keywords: Bayesian inference; data augmentation; effective sample size; Markov chain
Monte Carlo; numerical integration.
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1 Introduction

Inference about a latent state governing the dynamics of the system under study given

only the observed noisy data is of interest in many contexts, e.g. in applied statistics,

ecology, engineering or economics. A very intuitive way of describing such problems is

provided by latent process models, also known as state space models (SSM), see Durbin

and Koopman (2012) and West and Harrison (1997). Such models are frequently used

due to the combination of their natural separation of the different mechanisms acting on

the system of interest: the (unobserved) underlying system process; and the observation

process. Considering each distinct process separately simplifies the model specification

process and provides a very flexible modeling framework. This flexibility, however, typically

comes at the price of substantially more complicated fitting of such models to data as for the

general non-linear non-Gaussian SSM the associated likelihood is analytically intractable.

Only in certain circumstances the associated likelihood can be calculated explicitly: for

linear Gaussian systems the likelihood can be obtained by applying the Kalman filter;

for hidden Markov models with a discrete state space the likelihood may admit a closed-

form but may become unfeasible for a large number of states. In this paper we focus on

models for which the likelihood is intractable or for which it may be unfeasible to compute

explicitly.

Dominant approaches to intractable likelihood problems include: (i) numerical or Monte

Carlo integration to estimate the observed (or marginal) data likelihood; and (ii) data

augmentation (DA), based on the complete (or joint) data likelihood of the observed and

the imputed unobserved states, see Tanner and Wong (1987). Group (i) includes the

sequential Monte Carlo (SMC) methods, see Doucet et al. (2001), which can be used for

parameter estimation within a standard Markov chain Monte Carlo (MCMC) algorithm (i.e.

particle MCMC, Andrieu et al., 2010). In general, numerical integration is efficient for low

dimensional systems. DA approach (ii) has become standard for inference for SSMs within

a Bayesian framework, see Frühwirth-Schnatter (1994, 2004). DA treats the true unknown

states as auxiliary variables and imputes them within an MCMC algorithm. However,

“vanilla” MCMC methods may perform very poorly due to high correlation between the

2



imputed states and/or parameters, see Hobert et al. (2011) and the references therein.

We propose a novel model-fitting algorithm to circumvent these inefficiencies by com-

bining DA with numerical integration in a Bayesian hybrid approach, where the associated

standard “vanilla” algorithms perform substantially more efficiently. The underlying idea

is to combine the “good” aspects of both methods by minimizing the problems that arise

for each, i.e. highly correlated latent states for DA and the curse of dimensionality for

numerical integration. To this end, we utilize the structure of the unknown states and split

them into two types: auxiliary variables, imputed within the MCMC algorithm using DA;

and “integrable” states, numerically integrated out within the likelihood expression.

The structure of the paper is as follows. Section 2 presents the general SSM specification

and the standard approaches to their fitting. Section 3 introduces the proposed semi-

complete data augmentation approach, while Section 4 develops a general HMM-based

likelihood approximation to the associated likelihood. We demonstrate the efficiency gains

from our method in Section 5, based on two empirical applications related to the stochastic

volatility model and abundance estimation. Section 6 concludes with a discussion.

2 State space models

Consider a state space model given by (t = 1, . . . , T )

yt|xt,θ ∼ p(yt|xt,θ), (1)

xt|xt−1,θ ∼ p(xt|xt−1,θ), (2)

x0|θ ∼ p(x0|θ). (3)

Let y = (y1, . . . ,yT ) denote a time series of observations (potentially multivariate) of

length T , x = (x0, . . . ,xT ) a series of latent states (with xt = (x1,t, . . . , xD,t)
T potentially

multivariate, of dimension D <∞, with xd,t ∈ Xd) and θ the model parameters for which

we put a prior p(θ). To simplify notation, we use p as a general symbol for a probability

mass function (pmf) or a probability density function (pdf), possibly conditional.

The system process describing the evolution of xt, the true (unobserved) state of the

system over time is defined by distribution (2). The observation process which generates

3



yt, the observed data given the true underlying states, is specified by distribution (1).

This separation of the different mechanisms acting on the system of interest makes SSM

a very intuitive and flexible description of time series data. Figure 1 graphically presents

the dependencies between states and observations in the SSM. An extensive discussion of

SSMs is provided by Durbin and Koopman (2012) and Cappé et al. (2006), where this class

of models is called hidden Markov models (HMM).

xt−1 xt xt+1

yt−1 yt yt+1

Figure 1: A graphical representation of the general first-order SSM.

Modeling flexibility of SSMs is, however, often offset with the issue of estimating θ, the

associated model parameters. The observed data likelihood for the system (1)–(3)

p(y|θ) =

∫
p(y,x|θ)dx =

∫
p(x0|θ)

T∏
t=1

p(yt|xt,θ)p(xt|xt−1,θ)dx0dx1 . . . dxT , (4)

is typically not available in closed form due to the necessary integration over the latent

variables. This is despite the tractability of p(y,x|θ), the joint distribution of the data

and the auxiliary variables, often referred to as the complete data likelihood.

For models with discrete states the observed data likelihood is the likelihood of an

HMM, where the states of the chain correspond to distinct values of the latent process, and

the transition matrix can be derived from the transition equation (2). This likelihood can

be efficiently calculated using the forward algorithm (see Zucchini et al., 2016). However,

for systems with multiple processes or processes with a large set of possible states this can

lead to this approach being unfeasible.

To overcome the problem of the intractable likelihood, a DA technique is commonly

adopted, see Tanner and Wong (1987); Frühwirth-Schnatter (1994, 2004); Hobert (2011).

The unknown states x are treated as auxiliary variables and imputed leading to a closed-

form complete data likelihood (5) which in a Bayesian framework is used to construct the
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joint posterior distribution of θ and x in (6):

p(y,x|θ) = p(x0|θ)
T∏
t=1

p(yt|xt,θ)p(xt|xt−1,θ), (5)

p(θ,x|y) ∝ p(x,y|θ)p(θ) = p(y|x,θ)p(x|θ)p(θ). (6)

An MCMC algorithm (or other) can be used to obtain a sample from (6), from which

we obtain p(θ|y), the marginal posterior of θ. In practice the random walk Metropolis-

Hastings (RW-MH) algorithm is often used and it acts as a “vanilla” MCMC algorithm

(see Marin and Robert, 2007, Ch. 4).

However, this approach often results in posterior draws being highly correlated, indicat-

ing poor mixing and hence low efficiency of MCMC algorithms. This is particularly the case

for SSMs which impose a strong dependence structure on the latent variables and param-

eters. Single-update algorithms can perform especially poorly and block updates can lead

to improved mixing. However, the latter often require defining an appropriate partition of

the states and parameters into blocks and specifying an efficient proposal distributions for

each block. Thus, bespoke codes often need to be written dependent on model and data.

3 Semi-complete data augmentation

We propose to combine DA with numerical integration within a Bayesian hybrid framework,

which we call semi-complete data augmentation. A key idea is to separate the latent

state x into two components x = (xTaug,x
T
int)

T . We will refer to xint and xaug as the

“integrated” states and the “augmented” states, respectively. We specify the semi-complete

data likelihood (SCDL) p(y,xaug|θ) as follows

p(y,xaug|θ) =

∫
p(y|xaug,xint,θ)p(xaug,xint|θ)dxint. (7)

The joint posterior distribution of the parameters and augmented states is given by

p(θ,xaug|y) ∝ p(y,xaug|θ)p(θ) = p(y|xaug,θ)p(xaug|θ)p(θ). (8)

We note that the approach of King et al. (2016), who propose a Bayesian hybrid approach

for the particular case of capture-recapture data, is a special case of our general approach

proposed here.
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Specification of xaug, xint Consider a series of latent states x = {xt}Tt=0 of length

T + 1, where the state at time t is D dimensional: xt = (x1,t, . . . , xD,t)
T , for t = 0, 1, . . . , T .

We want to integrate out Dint dimensions of the state at time points Tint, where Dint ⊂

{1, . . . , D} and Tint ⊂ {0, 1, . . . , T} are “suitably” chosen subsets of dimension and time

indices, respectively. Such a “suitable” specification of Dint and Tint depends on the depen-

dence structure of the model so that the associated integral can be efficiently calculated.

For instance, it can be low dimensional or it can be reduced to a product of low-dimensional

integrals. We denote the compliments of both subsets Daug and Taug, respectively. We also

let T+
int and T+

aug denote the corresponding sets without the initial observations, i.e. exclud-

ing time t = 0, and we set T ∗ = |T+
int|. The “integrated” and “augmented” states are then

defined as the partition of x into xint = {xd,t}d∈Dint,t∈Tint
and xaug = {xd,t}d∈Daug ,t∈Taug ,

where their corresponding elements at time t are denoted by xint,t = {xd,t}d∈Dint
and

xaug,t = {xaug,t}d∈Daug , respectively. As example, consider the two following schemes.

(a) “Horizontal” integration: e.g. for a D = 2 dimensional state we integrate out the

second state at all time periods, so that Dint = {2} (and hence Daug = {1}), and

Tint = {0, 1, . . . , T} (and hence Taug = Tint), see Figure 2a. We use this scheme in

the lapwings data application in Section 5.2.

(b) “Vertical” integration: e.g. all D states are integrated out at odd time periods, so

that Dint = {1, . . . , D} and Tint = {2t + 1}bT/2ct=0 (and hence Taug = {2t}bT/2ct=0 ), see

Figure 2b. We use this scheme in the stochastic volatility (SV) model application in

Section 5.1, for D = 1 dimensional state.

As we can see, in general Tint and Taug do not need to be equal and their elements

may not be consecutive numbers. However, we would like to iterate over both sets using

the same index. Therefore, we introduce two functions τ(t) and a(t) such that the image

of τ is T+
int and the image of a covers T+

aug, both defined on 1, 2, . . . , T ∗. We require τ to

be bijective and allow a to take values in the power set of T+
aug. The latter characteristic

means that a(t) can take two or more values in T+
aug but also no value (i.e. a(t) = ∅). In

the two examples above we have τ(t) = t and a(t) = t for the horizontal integration (a)

and τ(t) = 2t+ 1 and a(t) = 2t for the vertical integration (b). Additionally, we specify a
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x1,t−1 x1,t x1,t+1

x2,t−1 x2,t x2,t+1

(a) Horizontal integration.

x1,t−1 x1,t x1,t+1

x2,t−1 x2,t x2,t+1

(b) Vertical integration

Figure 2: Two examples of an integration/augmentation scheme. Diamonds represent the

imputed states, circles – the integrated states. Dashed lines used for the relations from the

imputed (known) states.

function for observations o(t) with a similar role to τ and a, i.e. allowing us to iterate over

the set of observation indices {1, . . . , T} using the same index as to iterate over Tint and

Taug. Thus, we want the image of o(t) to be {1, . . . , T}, which may consists of elements

from both Tint and Taug. This means that we need to be able to assign multiple indices

from {1, . . . , T} to t. Hence, we allow o(t) to take values in the power set of Tint ∪ Taug.

For illustration, consider vertical integration (b) together with conditionally independent

observations yt|xt ∼ p(yt|xt). For t = 1, 2, . . . , T ∗ consider states in two different time

periods: at τ(t) = 2t+ 1 for xint and at a(t) = 2t for xaug, so for each t we need to account

for two different observations, yτ(t) and ya(t). This means that o(t) = {2t, 2t+ 1} for t ≥ 1.

In this case we also need to account for y1 so we additionally specify o(t) = {2t + 1} for

t = 0. For horizontal integration given in (a) Tint = Taug, hence o(t) = t.

In order to identify conditionally independent latent states to “integrate out”, one can

use the graphical structure of the problem: Figure 1 can be seen as an directed acyclic

graph (DAG), for which the literature on dynamic Bayesian networks (see Murphy, 2002)

provides insights regarding the impact of conditioning on a certain node (d-separation).

In the context of particle filters Doucet et al. (2000) note that the “tractable structure”

of some state space models might by analytically marginalized out given imputed other

nodes.

7



Approximate marginal likelihood The SCDL p(y,xaug|θ) in the joint posterior dis-

tribution of θ and xaug in (8) may still be analytically intractable. In this case we can

estimate it using simulation-based techniques. Consider a sample of length N of unknown

variables of interest (i.e. θ and xaug). Here, N is the number of points used for integration:

for a deterministic integration it is the number of evaluation points, for a stochastic, i.e.

Monte Carlo (MC), integration it is the number of draws. We use such a sample to com-

pute p̂N(y,xaug|θ), the N -sample estimator of the SCDL, and consequently to approximate

the posterior distribution as p̂N(θ,xaug|y) ∝ p̂N(y,xaug|θ)p(θ). We set p̂N(y,xaug|θ) such

that p̂N(y,xaug|θ)
N→∞→ p(y,xaug|θ), so that p̂N(θ,xaug|y)

N→∞→ p(θ,xaug|y). Further

properties of the resulting estimator depend on the approximation scheme. If it is unbiased

and non-negative, standard MCMC algorithms converge to the exact posterior distribu-

tion p(θ,xaug|y), which follows from the pseudo-marginal argument, see Beaumont (2003),

Andrieu and Roberts (2009) and Andrieu et al. (2010). Pseudo-marginal algorithms are

called “exact approximate” and we note that they are the extreme case of our approach

with xint = x. Whether our approximate MCMC algorithm is “exact approximate” or “just

approximate” depends on whether or not p̂N(y,xaug|θ) is an unbiased and non-negative

estimator of the marginal likelihood.

The “just approximate” algorithms, such as a quadrature, can be made arbitrarily close

to the true integral by considering sufficiently many points (i.e. as N →∞). Alternatively,

unbiased estimators using an MC approach might be characterized by large MC errors,

particularly for a small number of samples, see e.g. Korattikara et al. (2014), Jacob and

Thiery (2015). The choice between different likelihood approximation methods fits into the

traditional discussion on the bias-variance trade-off.

4 Approximations for MCMC sampling

We focus on the case when p̂N(y,xaug|θ) can be obtained as a product of one dimensional

integrals. This assumption is less restrictive than it may appear at first: the choice of

the auxiliary variables can often be made such that this condition is satisfied. There exist

several methods to numerically estimate a single one dimensional integral including: (1)
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quadrature with fixed nodes; (2) quadrature with adaptive nodes; (3) stochastic (MC)

integration. Approaches (1) and (2) can be seen as “binning” of similar values of the

integrated state vector within specified ranges (“bins”), which can then be interpreted as

states of a (finite-dimensional) first-order HMM. In the context of bins of equal widths such

an approach has been successfully applied e.g. by Langrock et al. (2012a) and Langrock

et al. (2012b); Langrock and King (2013). For approach (3) the resulting estimator of the

complete data likelihood is unbiased and an “exact approximate” algorithm is obtained.

We note that in low dimensions all these methods are feasible, however we focus on methods

based on the two former approaches as they provide an intuitive interpretation in terms of

state transition probabilities and conditional (augmented) observation distributions. There

are two cases when such an approximation might be particularly useful. First, when the

state vector is discrete but of a large size grouping of its elements into “bins” helps to reduce

the size of the problem. Second, for continuous states any form of numerical integration

basically reduces to splitting of the state space into “bins”, which can then be further

combined into larger groups to increase the efficiency of the algorithm.

4.1 Approximation bins as hidden Markov model states

We consider two ways to specify the bins, or quadrature points: a deterministic one, with

bins of a fixed size (but varying probability of occurring), and a stochastic one, with bins of

a fixed probability (but varying size). To simplify the exposition, we assume that xint,τ(t)

is univariate and we write xint,τ(t). For multivariate xint,τ(t) we may consider separate

bins for each integrated state dimension d ∈ Dint at time τ(t). We interpret the bins

as states of a latent (first-order) Markov process, which allows us to give the resulting

integration/augmentation scheme an HMM embedding.

Fixed bins A straightforward approach to binning is via bins of a fixed size as it relates to

a deterministic approximation of the likelihood with a quadrature and allows for a natural

HMM interpretation. Discretizing the state space to perform numerical integration dates

back to Kitagawa (1987) and is discussed in Zucchini et al. (2016). The state space Xint of
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the state to be integrated out is split into B bins of length k (for integer-valued variables

we assume k ∈ N) and e.g. the midpoints of the bins are considered for integration. Then

the values that fall in a given bin are approximated by the value of the midpoint of that

bin. Such an approach is used by Langrock et al. (2012b) to efficiently approximate the

likelihood for stochastic volatility models (with continuous bins) in a classical framework.

For infinitely dimensional states, either discrete or continuous, an “allowed integration

range” needs to be specified. For instance, for a normal variable this means setting a lower

and an upper bound for the integration b0 and bB, while for a Poisson variable only of an

upper bound bB since b0 = 0 in this case. We divide the resulting domain into intervals:

[b0, . . . , b1)︸ ︷︷ ︸
B1, bin 1

, [b1, . . . , b2)︸ ︷︷ ︸
B2, bin 2

, . . . , [bj−1, . . . , bj)︸ ︷︷ ︸
Bj , bin j

, . . . , [bB−1, · · · , bB)︸ ︷︷ ︸
BB , bin B

, bi − bi−1 = k, i = 1, . . . , B.

For continuous variables Bi is simply a continuous interval of length k, while for discrete

variables it consists of k subsequent integers, e.g. for a Poisson variable we have Bi =

{ik, . . . , (i+ 1)k} . We specify the midpoints of the bins as b∗i = bi−1+bi
2

(for integer-valued

variables rounding is required for even k).

We define {zt}, t ∈ 1, . . . , T ∗, as a B-state, discrete-time (not necessarily homogeneous)

Markov chain with transition probabilities γjk,t = P(zt = k|zt−1 = j) defined as

γjk,t := P(xint,τ(t) ∈ Bk|xint,τ(t−1) ∈ Bj,xaug,a(t−1)).

The transition of zt−1 = j to zt = k is equivalent to xint,τ(t) belonging to bin k given

xint,τ(t−1) was in bin j (and xaug,a(t−1)). For computationally intensive probabilities we can

further approximate these as γ̃∗jk,t := p(b∗k|b∗j ,xaug,a(t−1)), which for discrete variables means

P(xint,τ(t) = b∗k|xint,τ(t−1) = b∗j ,xaug,a(t−1)). To get the valid probability values we normal-

ize the transition probabilities as γ∗jk,t := γ̃∗jk,t/
∑B

c=1 γ̃
∗
jc,t. Notice that this corresponds

to treating the values in a bin uniformly. Alternatively, we can compute the transition

probabilities between bins directly as follows

P(xint,τ(t) ∈ Bk|xint,τ(t−1) ∈ Bj,xaug,a(t−1)) ∝
∫
Bk×Bj

p(xint,τ(t)|xint,τ(t−1),xaug,a(t−1))dxint,τ(t−1)dxint,τ(t).

However, such an analytical integration will typically be possible only in simple cases.
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Adaptive bins An alternative approach is to use adaptive intervals which do not require

a bounded integration range. This can be done by transforming the variable of interest to

the [0, 1] range by applying a cdf. The bins are specified on the [0, 1] interval and their

limits or midpoints are transformed back to obtain the values of the original variable. In

particular, quantiles of the distribution associated with the variable of interest can be used.

Suppose xint,τ(t) ∼ p(ϑτ(t)), τ(t) ∈ Tint, where ϑτ(t) is a vector of possibly time varying

parameters, with the corresponding cdf F (ϑτ(t)). Consider a vector of B + 1 quantiles

q = [q0, q2, . . . , qB]. The corresponding B mid-quantiles q∗ = [q∗1, q
∗
2, . . . , q

∗
B] are given

by q∗i = qi−1+qi
2

(e.g. q = [0.0, 0.1, 0.2, . . . , 1.0] and q∗ = [0.05, 0.15, . . . , 0.95]). For F (ϑt)

continuous and strictly monotonically increasing the bin midpoints at time t are determined

by the mid-quantiles as b∗i = F−1
(
q∗i |ϑτ(t)

)
. For discrete variables one can either use

the generalized inverse distribution function, or use a continuous approximation to the

associated discrete distribution.

4.2 Hidden Markov model likelihood

Having specified the states of the underlying Markov chain in the previous section, we

aim to use them to approximate the joint SCDL (7) by embedding it into an HMM form

(below, to ease the notation, we skip θ in conditioning). We relate each state of the hidden

Markov process with the relevant augmented states and observations. This imposes a time

structure on the SCDL integral with respect to the “integration time” and thus allows us

to cast it into a likelihood of an HMM.

Motivating example Consider the state specification from Figure 2a to which we add

conditionally independent observations to result in an SSM (see Online Appendix A.1

for a graphical illustration and more details). We specify xaug = {x1,t}Tt=0 =: x1 and

xint = {x2,t}Tt=0 =: x2, which corresponds to the “horizontal” integration. Hence, we put

Tint = Taug = {0, 1, . . . , T}, τ(t) = t, a(t) = t and o(t) = t. Using the temporal dependence
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in this system, the SCDL p(y,xaug) can be expressed as

p(y,xaug) = p(x1,0)
T∏
t=1

p(yt|x1,t)p(x1,t|x1,t−1) = p(x1,0)
T ∗∏
t=1

p(yo(t)|x1,a(t))p(x1,a(t)|x1,a(t−1)),

which is not tractable without integrating out x2. Hence, we marginalise over x2 and

approximate the resulting integral using a quadrature with B bins Bk, k = 1, . . . , B, as

p(y,xaug) =

∫
. . .

∫
p(x1,0)p(x2,0)

T ∗∏
t=1

p(yo(t)|x1,a(t), x2,τ(t))

× p(x1,a(t)|x1,a(t−1), x2,τ(t−1))p(x2,τ(t)|x1,a(t−1), x2,τ(t−1))dx2,τ(T ∗) . . . dx2,τ(1) (9)

≈
B∑

k0=1

· · ·
B∑

kT∗=1

p(x1,0)p(x2,0 ∈ Bk0)
T ∗∏
t=1

p(yo(t)|x1,a(t), x2,τ(t) ∈ Bkt)

× p(x1,a(t)|x1,a(t−1), x2,τ(t−1) ∈ Bkt−1)p(x2,τ(t) ∈ Bkt |x1,a(t−1), x2,τ(t−1) ∈ Bkt−1).

The above approximation has a natural interpretation in terms of HMM by associating the

events x2,τ(t) ∈ Bk with states of a hidden Markov process on B states. The transition

matrix of this process is

Γt =
[
P(x2,τ(t) ∈ Bk|x1,a(t−1), x2,τ(t−1) ∈ Bl)

]
k,l=1,...,B

, (10)

for t ∈ 1, 2, . . . , T ∗. We specify two further matrices for the “augmented data”: Pt for the

augmented states xaug and Qt for the real observations y, as follows

Pt = diag
(
p(x1,a(t)|x1,a(t−1), x2,τ(t−1) ∈ Bl)

)
l=1,...,B

, (11)

Qt = diag
(
p(yo(t)|x1,a(t), x2,τ(t) ∈ Bk)

)
k=1,...,B

. (12)

This is different compared to standard HMMs in which only the matrix for y is used.

Notice that the conditioning in (10) and (11) is with respect to the previous realizations

of the states, whilst for the observations in (12) it is with respect to the current states.

Finally, the quadrature based approximation to the SCDL (9) can be expressed as

p̂B(y,xaug) = p(x1,0)u0

(
T ∗∏
t=1

PtΓtQt

)
1, (13)

where u0 = (P(x2,0 ∈ B1), . . . , P(x2,0 ∈ BB)) is the initial distribution of the Markov chain.
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General formulation The generic matrices of the HMM-based approximation are

Γt =
[
P(xint,τ(t) ∈ Bk|xint,τ(t−1) ∈ Bl,xaug,a(t−1))

]
k,l=1,...,B

,

Pt = diag
(
p(xaug,a(t)|xint,τ(t−1) ∈ Bl),xaug,a(t−1)

)
l=1,...,B

,

Qt = diag
(
p(yo(t)|xint,τ(t) ∈ Bk,xaug,a(t))

)
k=1,...,B

,

for t ∈ 1, 2, . . . , T ∗ and lead to the following form of the HMM approximation

p̂B(y,xaug) = p(x1,0)u0Q0

(
T ∗∏
t=1

PtΓtQt

)
1, (14)

which differs from (13) by including Q0 := diag
(
p(yo(0)|xint,0 ∈ B∗k)

)
k=1,...,B

, which allows

for a dependence of some observations on the initial state of the Markov process. The SV

model example in Online Appendix D.3 demonstrates the role of Q0.

5 Applications

We assess the performance of the proposed SCDA method in two case studies with dis-

tinctively different features resulting in different integration schemes. The first application

relates to the well-known stochastic volatility model (SV), which is a popular tool to model

time-varying volatility especially for financial time series, see Taylor (1994) or Kim et al.

(1998). The second application involves the dataset on the Northern lapwing (Vanellus

vanellus), which has been extensively analyzed in statistical ecology, see Besbeas et al.

(2002), Brooks et al. (2004) or King et al. (2008).

We are interested in comparing the performance of the standard DA approach with

that of SCDA. For comparability, for each method we use a “vanilla” RW-MH (single-

update) algorithm for estimation. We tune each sampler so that the acceptance rates for

each element of θ and the average acceptance rates for each of the imputed states are

“reasonable”, i.e. 20–40% (Gelman et al., 1996, Roberts and Rosenthal, 2001).
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5.1 Financial model: stochastic volatility

The basic form of the SV model is given by

yt|ht,θ ∼ N (0, exp(ht)) , t = 1, . . . , T, (15)

ht|ht−1,θ ∼ N
(
µ+ φ(ht−1 − µ), σ2

)
, (16)

where h0|θ ∼ N
(
µ, σ2

1−φ2

)
, θ = (µ, φ, σ2)T . We adopt standard priors (Kim et al., 1998):

µ ∼ N (0, σ2
µ0),

φ+ 1

2
∼ B(αφ0, βφ0), σ2 ∼ IG(ασ20, βσ20),

with σ2
µ0 = 10, αφ0 = 20, βφ0 = 1.5, ασ20 = 5/2, βσ20 = 0.05/2. The estimation of the SV

model has been considered a challenging problem due to the intractable likelihood

p(y|θ) =

∫
p(y,h)dh =

∫
p(h0)

T∏
t=1

p(yt|ht)p(ht|ht−1)dh0dh1 . . . dhT . (17)

Some of the previous approaches to tackle this issue include standard DA approach, in which

the latent volatilities are imputed in an MCMC scheme, see Kim et al. (1998). The associ-

ated complete data likelihood admits a closed form p(y,h|θ) = p(h0)
∏T

t=1 p(yt|ht)p(ht|ht−1).

An alternative approach is provided by Fridman and Harris (1998) or Langrock et al.

(2012b) who propose numerical integration of the latent states. In particular, Langrock

et al. (2012b) approximate (17) using an HMM by discretizing the state space of h. They

perform a numerical integration of the latent states based on a grid of B equally sized

bins Bi = [bi−1, bi), i = 1, . . . , B, with the corresponding midpoints b∗i . The range of the

admissible values for the demeaned volatility, b0 and bB, is set to ±5σh, where σh is the

stationary standard deviation of the logvolatility process. This leads to an approximation

of (17) via p(y|θ) ≈ u0

∏T
t=1 ΓtQt1, where Γt =

[
γij,t

]
i,j=1,...,B

, with

γij,t = P(ht − µ ∈ Bj|ht−1 − µ = b∗i ) = Φ

(
bj − φb∗i

σ

)
− Φ

(
bj−1 − φb∗i

σ

)
,

Qt = diag

(
ϕ

(
yt

exp((µ+ b∗i )/2)

))
i=1,...,B

,

where Φ and ϕ denote the cdf and the pdf of the standard normal density, respectively.

Notice that the transition probabilities are time-constant so that the underlying Markov
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chain is homogeneous. Sandmann and Koopman (1998) point out that for the SV model

such a form of numerical integration might not be always suitable since a fixed grid cannot

efficiently accommodate for periods of low and high volatility. We address this issue by

suggesting a more efficient, adaptive HMM-based approximation as an alternative to the

fixed bins used by Langrock et al. (2012b).

Finally, we note that for µ and σ2 Gibbs updates can be performed based on full

conditional densities, see Kim et al. (1998). Furthermore, numerous bespoke enhancements

for sampling of the hidden states has been devised, see e.g. Kim et al. (1998). However,

we provide a general framework requiring only “vanilla” type updates (based on a MH RW

algorithm) and consider the full DA as a comparison benchmark.

Dependence structure and SCDL The basic SV specification concerns a single one-

dimensional state on the real line and the sampling inefficiency originates from a high

persistence of the logvolatility process. In order to break this dependence, we propose to

impute h2T and integrate out h2T+1, the states in even and odd time periods, respectively.

This corresponds to the vertical integration scheme with xint = h2T+1 and xaug = h2T .

Without loss of generality we assume that T is odd so that hT is integrated out and we

denote T ∗ = T−1
2

; if T is even then we add one extra integration based on uniformly

distributed hT+1. The exact SCDL is given by

p(y,h2T ) = p(h0)

∫
p(h1|h0)p(y1|h0)

(
T ∗∏
t=1

p(y2t+1|h2t+1)p(h2t+1|h2t)p(y2t|h2t)p(h2t|h2t−1)

)
dh1 . . . dhT ,

and can be split (by conditioning on the even states) into a product T ∗ + 1 of integrals

p(y,h2T ) = p(h0)︸ ︷︷ ︸
=:C0

∫
p(h1|h0)p(y1|h0)dh1︸ ︷︷ ︸

=:D0

T ∗∏
t=1

p(y2t|h2t)︸ ︷︷ ︸
=:Ct

∫
p(y2t+1|h2t+1)p(h2t+1|h2t)p(h2t|h2t−1)dh2t+1︸ ︷︷ ︸

=:Dt

.

Since the integrals above are conditionally independent, we have

p(y,h2T ) = C0D0

T ∗∏
t=1

CtDt =
T ∗∏
t=0

CtDt.
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Hidden Markov model approximations The integrals Dt cannot be evaluated ana-

lytically and need to be numerically approximated. We consider two different approaches.

Case (i) Fixed bins This approach follows Langrock et al. (2012b) and consists in

relating zt = k, the Markov chain being in state k, to the event h2t+1 − µ ∈ Bk, the

demeaned volatility in an odd time period 2t + 1 falling into the kth bin Bk. We take

equally spaced bins, each of length λ. Falling into bin Bk can be specified as e.g. lying in

the interval [bk−1, bk) or being equal to this interval’s midpoint b∗k = bk−1+bk
2

. In particular,

we consider approximation of the following form

Dt ≈
B∑
k=1

p(y2t+1|h2t+1 − µ = b∗k)p(h2t+2|h2t+1 − µ = b∗k)p(h2t+1 − µ ∈ Bi|h2t). (18)

The last term in (18) can be approximated as

p(h2t+1 − µ ∈ Bk|h2t) ≈ Φ

(
bk − φ(h2t − µ)

σ

)
− Φ

(
bk−1 − φ(h2t − µ)

σ

)
,

which is adopted in Langrock et al. (2012b), or using a simpler midpoint approximation

p(h2t+1 − µ ∈ Bk|h2t) ≈ λϕ

(
b∗k − φ(h2t − µ)

σ

)
,

which we adopt in our application due to computing time.

Case (ii) Adaptive bins Instead of specifying the grid points, we can fix the proba-

bilities for each bin (which in Case (i) needed to be determined) and consider quantiles cor-

responding to intervals of equal probability. The vector of mid-quantiles q∗ determines the

midpoints at time 2t+1, which are given as β∗k,2t+1 = φ(h2t−µ)+σ ·Φ−1 (q∗k), k = 1, . . . , B,

where h2t is the imputed volatility for the previous time period. We approximate Dt as

Dt ≈
B∑
k=1

ϕ

(
y2t+1

exp((β∗k,2t+1 + µ)/2)

)
ϕ

(
h2t+2 − µ− φβ∗k,2t+1

σ

)
· 1

B
,

since γij,t = 1
B

, and these constant transition probabilities from an imputed state cancel

out in the acceptance ratios.

Online Appendix D shows how the SCDA scheme easily extends to more complex mod-

els, the SV in the mean model of Koopman and Uspensky (2002) or SV with leverage.
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Application We consider daily log-returns of the IBM stock from 4th January 2000 to

29th December 2017 (4527 observations, see Figure 3). Below we discuss SCDA for the

basic SV model as well as for the extended SVML model (with leverage and SV in the

mean, see Online Appendix D). For both models we use adaptive intervals based on 10, 20

and 30 quantiles, while for the SV model we also consider fixed bins based on 20 and 30

intervals (fixed bins turned out to be unfeasible for the SVML model due to the necessary

number of bins for stability). For fixed bin we set b0 = −4 and bB = 4 for the integration

range. The obtained posterior means for the imputed volatilities suggest that this choice

was sufficient, as the estimated state means range roughly from −1 to 3. For each model

and method we simulate 50,000 draws after a burn-in of 10,000.
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Data descriptive statistics

T: 4527

Mean: 0.0130

Median: 0.0206

Min.: -16.8920

Max.: 11.3540

St. Dev.: 1.6302

Skewness: -0.1171

Kurtosis: 11.2089

Figure 3: SV model: IBM series, from 4th January 2000 to 29th December 2017.

Tables 1 and 2 present the estimation results for θ for the SV model and SVML model,

respectively (we report on selected volatilities in Online Appendix E.2). For both models

all the methods deliver comparable posterior estimates. A good agreement of the HMM-

based schemes with the benchmark DA approach demonstrates that the developed methods

provide a close approximation to the exact semi-complete data posterior. Interestingly, as

few as 10 adaptive bins suffice to provide accurate estimates, which contrasts with minimum

50 fixed bins considered by Langrock et al. (2012b). This demonstrates the flexibility of

the adaptive bins used within the SCDA scheme.

Tables 1 and 2 further reveal that the proposed vertical integration scheme breaks

the strong dependence between subsequent states to improve mixing for θ (Online Ap-

pendix E.2 contains the corresponding results for selected imputed volatilities). The effec-

tive sample sizes (ESSs, see Online Appendix B) for θ obtained with the SCDA methods
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Table 1: SV model: parameter posterior means, standard deviations and ESSs.

Method DA Adapt10 Adapt20 Adapt30 Fixed20 Fixed30

Time [s] 112 1980 2290 2567 1683 2057

µ 0.376 0.382 0.379 0.376 0.381 0.378

std (0.115) (0.116) (0.115) (0.115) (0.116) (0.115)

ESS 3201 5398 5440 5784 4504 5484

φ 0.962 0.962 0.961 0.961 0.962 0.962

std (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

ESS 114 249 279 121 240 3014

σ2 0.081 0.086 0.085 0.084 0.082 0.081

std (0.011) (0.013) (0.013) (0.012) (0.012) (0.012)

ESS 63 136 143 60.656 147 168

are typically higher than for the full DA approach. The only exception is the β parameter

of the SVML for which all the methods exhibit excellent mixing with the DA approach

slightly outperforming the HMM-based approximations. This high efficiency in the esti-

mations of β is related to the presence of this parameter only in the observation equation

hence being less affected by the high autocorrelation of the state process. On the other

hand, the second extra parameter of the SVML model, i.e. the leverage parameter ρ, is

hard to estimate efficiently. For this parameter the SCDA turns out particularly useful in

improving the mixing with the corresponding ESS values being up to 4.5 higher than for the

benchmark DA. Online Appendix E.2 provides ACF plots for θ and the selected volatilities,

for the SV and SVML model. As suggested by the ESS values reported in Tables 1–2, in

the majority of the cases we observe much quicker decays in the autocorrelations for the

SCDA algorithm compared to the “vanilla” DA approach.

However, we note that the computing times are higher for the SCDA approaches, with

the computations for the adaptive case based on 10 bins taking roughly 17 times and 7

times longer than for full DA for the basic SV model and the SVML model, respectively.

This suggests that the resulting gains in mixing may not necessarily be worth the extra

computational cost. However, given the very simple structure of the basic SV model and
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Table 2: SVML model: parameter posterior means, standard deviations and ESSs.

Method DA Adapt10 Adapt20 Adapt30

Time [s] 203 1511 2039 2497

µ 0.389 0.377 0.375 0.373

std (0.115) (0.112) (0.115) (0.113)

ESS 2510 5879 4836 5446

φ 0.96 0.963 0.961 0.96

std (0.006) (0.006) (0.006) (0.006)

ESS 119 340 432 239

σ2 0.085 0.081 0.084 0.084

std (0.011) (0.011) (0.012) (0.013)

ESS 49 172 187 149.68

β 0.005 0.006 0.006 0.006

std (0.009) (0.009) (0.009) (0.009)

ESS 7375 6969 6692 7186

ρ -0.286 -0.289 -0.293 -0.292

std (0.047) (0.044) (0.045) (0.048)

ESS 147 682 513 552

not much more complex one of the SVML model, this is perhaps not very surprising. We

expect the SCDA approach to be more beneficial for more complex models, with even more

involved dependence structure and relatively slower computation time for the benchmark

DA approach. This can be already partly seen from shorter relative (to DA) computing

times for the SCDA methods for the SVML compared to these for the SV model. For in-

stance, the proposed integration scheme for the SV model could be particularly useful for a

dynamic factor model with double stochastic volatility (where both the observation and the

factor disturbances are subject to stochastic volatility). Due to the complex dependence

structure as well matrix computations involved, the standard DA can be expected to per-

form relatively poorly and be time consuming to run. Then, there are several possibilities

how to specify the augmentation-integration scheme, e.g. to fully integrate one of the SV
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processes; or interweave between every-second state of both SV processes (e.g. to integrate

odd states for one SV process and even states for another SV process).

5.2 Ecological model: lapwing data

We consider y = (y1, . . . , yT ), a time series of observations relating to census data (abun-

dance index) of adult British lapwings (Vanellus vanellus, see Online Appendix C for de-

tails). The lapwings dataset plays an important role in statistical ecology where it has

frequently served as an illustration (see King, 2011; Besbeas et al., 2002).

The counts are only estimates of the true unknown population size, which is assumed

to change over time according to a first order Markov process. The latent population is

related to two times series: for first-years and adults, denoted N1 = (N1,1, . . . , N1,T )T and

Na = (Na,1, . . . , Na,T )T , respectively. Hence, the latent state is given by x = (NT
1 ,N

T
a )T .

Following Besbeas et al. (2002) we model the count data via the following SSM

yt|Na,t,θ ∼ N (Na,t, σ
2
y), t = 1, . . . , T, (19)

N1,t|Na,t−1,θ ∼ Poisson(Na,t−1ρt−1φ1,t−1), (20)

Na,t|N1,t−1, Na,t−1,θ ∼ Bin
(
(N1,t−1 +Na,t−1), φa,t−1

)
, (21)

where N1,0 ∼ Neg–bin(r1,0, p1,0) and Na,0 ∼ Neg–bin(ra,0, pa,0). The model is parametrized

by the time-varying productivity rate ρt, and time-varying survival rates φ1,t and φa,t, for

first-years and adults, respectively, while ai,0 and pi,0 are hyperparameters of the prior

distribution on the initial state value Ni,0, i ∈ {1, a}.

We let the SMM parameters follow regressions specified by Besbeas et al. (2002)

logitφ1,t = α1 + β1ft, logitφa,t = αa + βaft, log ρt = αρ + βρt̃,

where t̃ the normalized time index and ft denotes the normalized value of frost days fdays

in year t, see Online Appendix C for the explanation of this covariate.

To improve the estimation, Besbeas et al. (2002) consider an integrated population

model combining the census data with ring-recovery data (see Online Appendix C for the

formula of the additional regression parametrized by αλ and βλ and further details). We
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refer to Besbeas et al. (2002) for a more detailed description of the integrated model. The

set of model parameters is collected in a vector θ = (α1, αa, αρ, αλ, β1, βa, βρ, βλ, σ
2
y)
T .

Finally, we set independent vague N (0, 100) priors for the regression coefficients αi and

βi, i ∈ {1, a, ρ, λ} and Γ−1(ay, by) on σ2
y with ay = 0.001 = by. For the initial states,

we set r1,0 = 4 and p1,0 = 0.98 so that the prior mean and variance of first-year birds is

approximately 200 and 10, 000, respectively; and ra,0 = 111 and pa,0 = 0.9, so that the

prior mean and variance of adults is approximately 1, 000 and 10, 000, respectively.

System (19)–(21) is non-Gaussian and nonlinear with the associated likelihood unavail-

able in a closed form. The standard vanilla DA approach leads to poorly mixing MCMC

algorithms as demonstrated by King (2011). To this end, we first consider the dependence

structure in the model to determine sensible xint and xaug .

Na,t−1 Na,t Na,t+1

N1,t−1 N1,t N1,t+1

yt−1 yt yt+1

Pt−1 Pt Pt+1 Pt+2

Qt−1 Qt Qt+1

Γt−1 Γt Γt+1
Γt+2

Pt−1
Pt Pt+1

Pt+2

2nd order

Figure 4: Lapwing data: combining DA and HMM structure. Diamonds – the imputed

nodes, squares – the data, circles – the unknown variables. Integrating out N1 leads to a

second order HMM on Na. Dashed lines for the relations from the imputed states.

The two-dimensional state (N1,t, Na,t)
T follows the first-order Markov process with a

non-trivial transition kernel. First-year birds in t only feed into adults in t + 1, however

adults in t contribute to both the number of first-years and adults in t + 1 as well as to

the observed yt. This suggests that reducing the strength of the dependence structure can

be obtained by integrating out N1 while imputing Na. This corresponds to the horizontal

integration scheme with xint = N1 and xaug = Na. The resulting modified dependence

structure is presented in Figure 4. Marginalizing over N1 simplifies the analysis as only
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Na need to be considered and they now follow a second-order Markov process. A similar

second order structure in this context has also been noted by Besbeas and Morgan (2019).

Hidden Markov Model approximation SCDL for the augmented data (yT ,NT
a )T is

p(y,Na|θ) = p(y|Na,θ)p(Na|θ), (22)

which is still intractable, thus we approximate it using the HMM embedding in (14). Since

N1,t follows a Poisson distribution, we only need to specify a truncation value N∗ for the

maximum population size for first-years for a fixed bin approach (i.e. we set bB = N∗,

with b0 = 0). Since the observations y are conditionally independent from N1 given Na,

summing over of N1 is necessary for the second term on the right hand side of (22), to

obtain the marginal pmf for Na. The marginal pmf of Na is

p(Na) =
∑
N1

p(Na,0)p(N1,0)
T∏
t=1

p(N1,t|Na,t−1) p(Na,t|Na,t−1, N1,t−1). (23)

We consider the “exact” approximation with the bin size equal to one, in which the ap-

proximation error is only due to truncating to N∗. A typical element in the product in (23)

can be approximated as (for t ≥ 2)

p(Na,t|Na,0:t−1) =
N∗∑
k=0

P(N1,t−1 = k|Na,t−2)︸ ︷︷ ︸
=:uk,t−1

p(Na,t|Na,t−1, N1,t−1 = k)︸ ︷︷ ︸
=:pk,t

, (24)

where pk,t denotes the conditional pmf of Na,t given N1,t−1 = k and Na,t−1. Next, uk,t

(collected in ut = [uk,t]
N∗

k=1) denotes the “quasi-unconditional” probability of N1,t = k (in

the sense of the Markov structure but not in terms of Na,t−1) and can be derived as

uk,t = P(N1,t = k|Na,t−1) =
N∗∑
l=0

P(N1,t−1 = l|Na,0:t−1)P(N1,t = k|N1,t−1 = l,Na,0:t−1)

=
N∗∑
l=0

P(N1,t−1 = l|Na,t−2)︸ ︷︷ ︸
=ul,t−1

P(N1,t = k|Na,t−1)︸ ︷︷ ︸
=:γlk,t

.

In general, we have ut = ut−1Γt with Γt = [γlk,t]
N∗

l,k=1 and γlk,t = P(N1,t = k|N1,t−1 =

l,Na,0:t−1). However, since in our case N1,t’s are mutually independent given Na,t−1, the
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transition probabilities simplify to γlk,t = P(N1,t = k|Na,t−1) for k = 0, . . . , N∗ − 1, while

for k = N∗ we need γlk,t = 1 −
∑N∗−1

j=0 γlj,t to ensure a valid probability distribution.

Thus, the time varying state transition matrix Γt takes a simple form with rows equal to

(γ11,t, . . . , γ(N∗−1)(N∗−1),t, γN∗N∗,t). Next, we express (24) in a convenient matrix notation

p(Na,t|Na,0:t−1) =


γ11,t−1 . . . γ1N∗,t−1

...
. . .

...

γ11,t−1 . . . γ1N∗,t−1


︸ ︷︷ ︸

=Γt−1


p1,t . . . 0
...

. . .
...

0 . . . pN∗,t


︸ ︷︷ ︸

=:Pt


1
...

1


︸︷︷︸

1

= Γt−1Pt1.

Combining (23) and (24) yields the HMM form for the joint pmf of the imputed states

p(Na) = u0p(Na,0)

(
T∏
t=1

PtΓt

)
1,

where u0 = [p(N1,0 = 0), . . . , p(N1,0 = N∗)]T is the initial state distribution.

Since the real observations yt, conditionally on Na,t, are independent of N1,t, the ob-

servation matrix becomes the identity matrix I scaled by p(yt|Na,t), i.e. Qt = p(yt|Na,t)I.

Finally, the approximation to the SCDL (22) can be expressed as

p(y,Na|θ) = p(y|Na)p(Na) = u0p(Na,0)

(
T∏
t=1

PtΓtQt

)
1.

Results We compare the performance of the standard DA approach, in which we impute

θ,N1 andNa, with that of the SCDA, in which we impute θ andNa. For comparability we

use a “vanilla” MH RW algorithm for the estimation of the integrated model, with discrete

uniform updates for the states and normal updates for the regression coefficients. We

use a Gibbs update σ2
y|Na ∼ Γ−1

(
ay + T/2, by +

∑T
t=1(yt −Na,t)

2/2
)

for the observation

variance. For the SCDA we first consider the “exact” integration used in the derivations

above, in which the only influence on the posterior is the upper limit which we set bB = 679.

This choice of the upper bound is based on the results for first-years from previous studies.

We further consider a number of approximate schemes based on fixed and adaptive intervals

(with 10, 20 and 30 bins in each case). For adaptive bins we use a normal approximation

to the Poisson distribution. Each time we use 100, 000 draws after a burn-in of 10, 000.
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Table 3: Lapwing data: absolute (in seconds) and relative (wrt DA) computing times.

Method DA Adapt10 Adapt20 Adapt30 Fixed10 Fixed20 Fixed30 Exact

Absolute time 1203 978 1067 1024 1022 1060 1135 2855

Relative time 1.00 0.81 0.89 0.85 0.85 0.88 0.94 2.37

Table 3 summaries computation time for each scheme. As expected, the exact method is

the slowest (2.5 times than the full DA approach) as each integration is based on summing

680 elements. All the approximate schemes are faster (10–20%) than the DA approach

due to their efficient implementation based on vectorized computations with relatively few

elements to be summed every iteration. Table 4 presents the results for the regression

parameters in terms of posterior means and standard deviations as well as ESSs and ESSs

per second, for DA and selected SDCA approaches. Online Appendix E.2 provides the

comparison for all elements of θ and selected elements of Na between all the methods.

The results demonstrate the efficiency of the proposed SCDA approach: all the SCDA-

based schemes, except the one based on 10 fixed bins, outperform the full DA approach by

delivering much higher (up to 4 times) ESSs and ESSs/sec. This is illustrated in Figure 5,

which shows the autocorrelation (ACF) plots for the SSM parameters. We refer to Online

Appendix E.1 for the ACF plots for selected elements of Na.

6 Discussion

We have presented a new estimation method for state space models using semi-complete

data augmentation, designed to increase the efficiency of “vanilla” MCMC algorithms. The

main idea behind the approach is to combine data augmentation with numerical integration,

where the latter aims at reducing the dependence between the imputed auxiliary variables.

The concept relates to general Rao-Blackwellization methods, however we do not require the

resulting conditional distribution (given the imputed states) to be analytically integrable,

nor the imputed auxiliary variables to be sufficient statistics for the marginalized states.

We propose integration schemes based on the insights from hidden Markov models

24



Figure 5: Lapwing data: ACF plots for the SSM regression parameters.

in the sense that we specify new transition probabilities between redefined states, to be

numerically integrated out, conditionally on the auxiliary variables. Further efficiency gains

can be obtained by “binning”. This results in an approximation to SCDL and we note that

for continuous states such an approximation is a natural starting point for our approach (as

in principle for any MC based analysis). We consider two types of “binning”: “fixed bins”

based on a pre-specified grid and “adaptive bins” based on e.g. quantiles of the relevant

distribution. The latter removes the problem of specifying the “essential domain” required

for fixed bins (see Kitagawa, 1987; Langrock et al., 2012b). Adaptive bins are also more

suited for problems with highly varying integration ranges, such as the class of SV models,

for which fixed bins are unlikely to be efficient (see Sandmann and Koopman, 1998). In

our examples a similar accuracy was achieved by using fewer adaptive bins than fixed bins.

The two empirical studies considered demonstrate the gains from applying the SCDA

approach compared to the general “vanilla” MCMC algorithm. For the lapwings data

model the efficiency gains are substantial, not only in terms of higher effective sample sizes

compared to the standard DA technique but also when taking into account the computing

25



Table 4: Lapwing data: SSM regression parameter posterior means, standard deviations

and ESSs. The highest ESS and ESS/sec. for each parameter in bold. Computing times in

square brackets.

Method α1 αa αρ β1 βa βρ

DA Mean 0.547 1.574 -1.189 -0.164 -0.240 -0.348

(Std) (0.068) (0.071) (0.091) (0.062) (0.039) (0.043)

ESS 685 124 112 1050 389 106

[1204 s] ESS/sec. 0.57 0.10 0.09 0.87 0.32 0.09

Adapt10 Mean 0.547 1.564 -1.180 -0.163 -0.239 -0.350

(Std) (0.068) (0.070) (0.092) (0.061) (0.040) (0.040)

ESS 1490 390 316 2777 527 126

[978 s] ESS/sec. 1.52 0.40 0.32 2.84 0.54 0.13

Fixed10 Mean 0.512 1.441 -1.044 -0.207 -0.205 -0.348

(Std) (0.070) (0.055) (0.063) (0.050) (0.039) (0.022)

ESS 942 34 37 181 105 282

[1022 s] ESS/sec. 0.92 0.03 0.03 0.18 0.10 0.28

Fixed30 Mean 0.545 1.562 -1.170 -0.162 -0.240 -0.342

(Std) (0.069) (0.073) (0.095) (0.061) (0.039) (0.040)

ESS 1758 439 329 2873 502 208

[1136 s] ESS/sec. 1.55 0.39 0.29 2.53 0.44 0.18

time (ESS/sec.). For the SV and SVML models, SCDA boosts the mixing, however at the

cost of an increased computing time. Nonetheless, for larger models with a more complex

dependency structure, such as dynamic factor models with double stochastic volatility,

the proposed SCDA method is likely to become much more profitable – also in terms of

increased ESS/sec – as discussed in Section 5.1.

The split of the latent states into “auxiliary” and “integrated” variables is model-

dependent and should be specified in such a way that the algorithm is efficient. This choice

is not unique and multiple approaches may be applied – the efficiency of these will depen-

dent on both the model and data. On the one hand, the imputed states aim to have reduced
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correlation, to improve mixing of MCMC algorithms; on the other hand, the numerical in-

tegration is over a very low number of dimensions, which in many cases is feasible due to

conditional independence of the integration problems. To identify such conditionally inde-

pendent latent states it can be useful to investigate the underlying graphical structure of

the model. In general, high dimensional integration remains a challenging problem, which

we leave for further research, noting that quasi Monte Carlo could be useful in this context.

The proposed methodology naturally leads to several topics for further research. First,

we aim to investigate bounds of approximation errors in order to quantify the demonstrated

higher usefulness of adaptive bins compared to fixed bins. Second, adopting automated

methods to identify the correlation structure would make applying the SCDA approach

to new models easier and potentially more efficient, especially if the model at hand is

complex and/or there are no “natural candidates” for the integrated states. Third, we

expect parallelization methods to reduce the increased computing time recorded for the

SV models. Since updating a given state is associated with conditioning on only two

other states, the previous one and the next one (see Figure 2 in Online Appendix A.2), it is

possible to update every second augmented state in parallel. In principle, such an approach

could be also adopted for the lapwings data, however there updating every fourth state could

only be used due to the second-order dependence in the associated HMM representation.

SUPPLEMENTARY MATERIAL

Online Appendix (SCDAOnlineAppendix.pdf, pdf file) provides more details on the

specifications of the HMM-based approximations to the three models considered in

the paper (Part A); on computing the effective sample size (Part B); on the lapwings

dataset (Part C); the extensions of the basic SV model (Part D). Finally, additional

results for both applications are presented (Part E). 11

MATLAB codes (SCDACode.zip, zip file) consist of scripts, functions and data used for

the empirical applications. Two README txt files instruct the reader on their use.
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A Specification details of the HMM approximations

In this section we present how the general formulation of the HMM-based approximation

to SCDL can be applied to the examples discussed in Sections 4 and 5.

A.1 Motivating example from Section 4.2

SSM from Section 4.2 is given by

yt|x1,t, x2,t ∼ p(x1,t, x2,t),

x1,t+1|x1,t, x2,t ∼ p(x1,t, x2,t),

x2,t+1|x1,t, x2,t ∼ p(x1,t, x2,t),

xi,0 ∼ p(xi,0), i = 1, 2

and we aim at imputing x1,t and integrating out x2,t, which implies Tint = Taug = {0, 1, . . . , T}.

Hence, the index functions τ(t), a(t) and o(t) are simply identities and we skip them below

to simplify the exposition. Figure 1 illustrates the corresponding dependencies.
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x1,t−1 x1,t x1,t+1

x2,t−1 x2,t x2,t+1

yt−1 yt yt+1

Pt−1 Pt Pt+1 Pt+2

Γt−1 Γt Γt+1 Γt+2

Qt−1 Qt Qt+1

Γt−1 Γt Γt+1 Γt+2

Pt−1 Pt Pt+1
Pt+2

Qt−1 Qt Qt+1

Figure 1: Illustration of combining DA and HMM structure. Conditionally independent

observations added to the state specification from Figure 2a Diamonds represent the im-

puted states, circles – the integrated states. Dashed lines used for the relations from the

imputed (known) states..

The “quasi marginal” distribution1 of the imputed state x1,t can be approximated as

p(x1,t|x1,0:t−1) ≈
B∑
j=1

P(x2,t−1 ∈ Bj|x1,0:t−2)︸ ︷︷ ︸
=:uj,t−1

p(x1,t|x1,t−1, x2,t−1 ∈ Bj)︸ ︷︷ ︸
=:pj,t

, (1)

where pj,t is the likelihood of the augmented state at t given the imputed state at t− 1 was

in the jth bin (and previous realizations of x1, but these are treated as known) and uj,t−1

is the unconditional probability of the hidden process x2 falling into the jth bin at t − 1.

This “quasi-unconditional” probability can be expressed as

uk,t = P(x2,t ∈ Bk|x1,0:t−1) =
B∑
j=1

P(x2,t−1 ∈ Bj|x1,0:t−2)︸ ︷︷ ︸
=uj,t−1

P(x2,t ∈ Bk|x1,0:t−1, x2,t−1 ∈ Bj)︸ ︷︷ ︸
=:γjk,t

,

(2)

which corresponds to the standard result in HMM that the unconditional distributions in

subsequent periods are related via the transition matrix Γt = [γjk,t]k,j=1,...,B as follows (see

Zucchini et al., 2016, p.16, 32)

ut = ut−1Γt.

1i.e. marginal in the sense of the Markov structure, not the augmented states which we treat as known.
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Next, the observations are conditionally independent, hence

p(yt|x1,0:t) ≈
B∑
k=1

uk,t p(yt|x1,t, x2,t ∈ Bk)︸ ︷︷ ︸
=:qk,t

, (3)

with qk,t denoting the likelihood of the observation at t given the hidden state in the same

period t falling into bin k (and the imputed state at t).

Comparing (2) and (3) shows that the distributions of the same period t augmented

states x1,t and “real” observations yt are conditioned on the latent states from different

periods, i.e. t − 1 and t, respectively. This is a consequence of the general dependence

structure in SSMs. The transition matrix at t captures this change of the underlying state

so that combining of all there parts (1), (2) and (3) results in

p(yt, x1,t|x1,0:t−1) ≈
B∑
j=1

B∑
k=1

uj,t−1pj,tγjk,tqk,t.

To compute the HMM-based approximation to the SCDL we consider forward probabilities

αt of the imputed states x1,t and observations yt (Zucchini et al., 2016, Sec. 2.3.2) defined as

αt = p(x1,0)u0

t∏
s=1

PsΓsQs, t = 1, 2, . . . T ∗,

α0 = p(x1,0)u0Q0,

with u0 = (P(x2,0 ∈ B1), . . . , P(x2,0 ∈ BB)) being the initial distribution of the latent state

and Q0 = I. It follows from this definition that the forward probabilities can be expressed

recursively as

αt = αt−1PtΓtQt,

so that the required approximation to the SCDL is given by

p̂B(y,x1) = p(x1,0)u0αT ∗I.

Notice that the transition matrix Γt is a full matrix, however in some cases, e.g. the lapwing

population model, the transition matrix can take a simpler form e.g. it is “column-wise

constant”: γlk,t = P(x2,t = k|x1,0:t−1), ∀l (each row is the same). On the other hand, the
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augmented observation matrix and the real observation matrix have diagonal forms Pt =

diag (pj,t)j=1,...,B and Qt = diag (qk,t)j=k,...,B, respectively. Using the notation introduced

in Section 4.2 we can write

p̂B(y,x1) = p(x1,0)u0Q0

T ∗∏
t=1

(PtΓtQt) 1.

We can verify the above results be explicitly calculating

αt−1PtΓtQt1 =
[
α1,t−1 . . . αB,t−1

]
p1,t 0 0

0
. . . 0

0 0 pB,t



γ11,t . . . γ1B,t

...
. . .

...

γB1,t . . . γBB,t



q1,t 0 0

0
. . . 0

0 0 qB,t




1
...

1



=
[
α1,t−1 . . . αB,t−1

]
p1,tγ11,t . . . p1,tγ1B,t

...
. . .

...

pB,tγB1,t . . . pB,tγBB,t



q1,t 0 0

0
. . . 0

0 0 qB,t




1
...

1



=
[
α1,t−1 . . . αB,t−1

]
p1,tγ11,tq1,t . . . p1,tγ1B,tqB,t

...
. . .

...

pB,tγB1,tq1,t . . . pB,tγBB,tqB,t




1
...

1



=


B∑
j=1

αj,t−1pj,tγj1,tq1,t︸ ︷︷ ︸
=α1,t

. . .
B∑
j=1

αj,t−1pj,tγjB,tqB,t︸ ︷︷ ︸
=αB,t




1
...

1

 = αt1

and expressing

p̂B(y,x1) =
B∑

k0=1

B∑
k1=1

· · ·
B∑

kT∗=1

p(x1,0)uk0,0

T ∗∏
t=1

pkt−1,tγkt−1kt,tqkt,t.

A.2 SV model

Basic SV model The SCDL for the basic SV model can be expressed as

p(y,h2T |θ) = p(h0)

∫
p(h1|h0)p(y1|h0)

(
T ∗∏
t=1

p(h2t+1|h2t)p(y2t+1|h2t+1)

× p(h2t|h2t−1)p(y2t|h2t)

)
dh1 . . . dhT ∗ , (4)
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where T ∗ = T−1
2

(we assume T odd). Since we impute volatilities at even time periods the

Markov chain is given by {zt} = {h2t+1} for t = 1, . . . , T ∗ and its transition matrix has the

form

Γt =


P(h2t+1 ∈ B1|h2t−1 ∈ B1, h2t) . . . P(h2t+1 ∈ BB|h2t−1 ∈ B1, h2t)

...
. . .

...

P(h2t+1 ∈ B1|h2t−1 ∈ BB, h2t) . . . P(h2t+1 ∈ BB|h2t−1 ∈ BB, h2t)



=


P(h2t+1 ∈ B1|h2t) . . . P(h2t+1 ∈ BB|h2t)

...
. . .

...

P(h2t+1 ∈ B1|h2t) . . . P(h2t+1 ∈ BB|h2t)

 .
We can see that the rows of Γt are the same, which means that the hidden states are

conditionally independent given the imputed states. For the augmented observation matrix

Pt we have

Pt = diag (p(h2t|h2t−1 ∈ Bj))j=1,...,B .

The observation matrix has the form

Qt = diag (p(y2t, y2t+1|h2t+1 ∈ Bj, h2t))j=1,...,B .

Inserting Γt, Pt and Qt in (14) with τ(t) = 2t+ 1, a(t) = 2t and o(t) = {2t, 2t+ 1} leads to

p̂B(y,h2T ) = p(h0)u0Q0

T ∗∏
t=1

PtΓtQt1, (5)

where u0 =
[
P(h1 ∈ Bk|h0) . . . P(h1 ∈ BB|h0)

]
and Q0 = diag (y1|h1 ∈ Bk)k=1,...,B. Then

(5) is an HMM-based approximation to (4) converging to its true value in B → ∞ and

b0 → −∞, bB →∞.

Figure 2 illustrates the HMM approximation and shows dependencies relevant for a

single imputation problem.
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h2th
(2)
2t−1

h
(1)
2t−1

...

h
(B)
2t−1

h
(2)
2t+1

h
(1)
2t+1

...

h
(B)
2t+1

h2t−2 h2t+2

p1,t

p2,t

pB,t

γ1,t

γ2,t

γB,t

γ1,t−1

γ2,t−1

γB,t−1

p1,t+1

p2,t+1

pB,t+1

Figure 2: SV model: combining DA and the HMM-based integration. Diamonds represent

the imputed states, circles – the states being integrated out. h
(k)
t denotes ht ∈ Bk. The

graph presents a single imputation problem of h2t with the associated integrations.

SVML model For the SVML model we only need to adjust the matrices Pt and Qt as

the dependence structure of the observations remains unchanged

Γt =


P(h2t+1 ∈ B1|h2t, y2t) . . . P(h2t+1 ∈ BB|h2t, y2t)

...
. . .

...

P(h2t+1 ∈ B1|h2t, y2t) . . . P(h2t+1 ∈ BB|h2t, y2t)

 ,
Pt = diag (p(h2t|h2t−1 ∈ Bj, y2t−1))j=1,...,B .

A.3 Lapwing population model

The approximation for the lapwings model is a special case of scheme used for the general

model discussed in the Section A.1, with the transition matrix Γt having equal rows. The

HMM is here given as {zt} = {N1,t} for t = 0, . . . , T and we again set Tint = Taug =

{0, 1, . . . , T}, so that the index functions τ(t), a(t) and o(t) are simply identities. The
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transition matrix has the form

Γt =


P(N1,t = b∗1|N1,t−1 = b∗1,Na,0:t−1) . . . P(N1,t = b∗B|N1,t−1 = b∗1,Na,0:t−1)

...
. . .

...

P(N1,t = b∗1|N1,t−1 = b∗B,Na,0:t−1) . . . P(N1,t = b∗B|N1,t−1 = b∗B,Na,0:t−1)



=


P(N1,t = b∗1|Na,t−1) . . . P(N1,t = b∗B|Na,t−1)

...
. . .

...

P(N1,t = b∗1|Na,t−1) . . . P(N1,t = b∗B|Na,t−1)

 ,
with b∗k = k, for k = 0, . . . , N∗. We can see that for each column of Γt its elements are the

same. For the augmented observation matrix Pt we have

Pt = diag
(
p(Na,t|Na,t−1, N1,t−1 = b∗j)

)
j=1,...,B

,

so Pt and Γt condition on the same hidden state. The observation matrix has a simple form

Qt = p(yt|Na,t)I.

Inserting Qt, Pt and Qt in (14) leads to

p̂B(y,Na) = p(Na,0)u0Q0

T ∗∏
t=1

PtΓtQt1, (6)

where u0 =
[
P(N1,0 ∈ Bk) . . . P(N1,0 ∈ BB)

]
and Q0 = I. Then (6) is an HMM-based

approximation to (22) converging to its true value in B →∞ and bB →∞.

B Effective sample size

Since the samples generated by MCMC algorithms are not independent, the standard

variance estimator cannot be used to measure the variance of the empirical average delivered

by an MCMC algorithm. The asymptotic variance σ2

MCMC of the (stationary) Markov

chain X1, X2, . . . is given by

σ2

MCMC = Var[Xi]

(
1 + 2

∞∑
k=1

ρ(k)

)
︸ ︷︷ ︸

IF

, (7)
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where ρ(k) is the kth order serial correlation (Geyer, 2011). The term in the parentheses

in (7) is referred to as the inefficiency factor (IF, Pitt et al., 2012). High values of autocor-

relation, typically reported for MCMC sampling, lead to the standard variance estimator

underestimating the true variance σ2

MCMC. A common measure to assess the deteriora-

tion in the sampling efficiency due to the draws autocorrelation is the effective sample size

(ESS) defined as

ESS =
M

IF
,

where M is the sample size (Robert and Casella, 2004, Ch. 12.3.5). It indicates what the

size of an independent sample would be, had it the same variance as the MCMC sample..

In practice, one typically cannot compute the IF directly and needs to estimate it

instead. As noted by Robert and Casella (2004, Ch. 12.3.5) estimation of IF is a “delicate

issue”, as it contains an infinite sum. A possible solution to this problem is set a cut-off

value K for the autocorrelation terms being summed up: ÎF = 1+2
∑K

k=1 ρ̂(k). The choice

of K poses the risk of subjectiveness; setting K to the lowest lag at which ρ̂(k) become

insignificant seems to be a reasonable solution suggested by e.g. Kass et al. (1998) or Pitt

et al. (2012) and this is the approach we take here.

C Lapwings dataset

The lapwings dataset plays an important role in statistical ecology and has served as an

illustration in several handbooks (see King, 2011; King et al., 2010) and papers (e.g. Besbeas

et al., 2002) in this field. It was also used as an example of a complex statistical model

by e.g. Goudie et al. (2018). One of the main reasons for such a particular interest in

this species is a sharp decline in its population in recent years: its European population is

considered as near threatened by International Union for Conservation of Nature (2018),

while in Britain in particular is has been moved to the red list of species of conservation

concern, see The Royal Society for the Protection of Birds (2018) (i.e. of the highest

conservation priority, with species needing urgent action) from the amber list (mentioned

by previous literature, see Besbeas et al., 2002; Brooks et al., 2004). The population serves
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as an indicator species for other farmland birds, giving us an insight into the dynamics of

similar bird species.

We follow the approach of Besbeas et al. (2002) and use three datasets for the lapwings

application: the count census data for the population index, the weather data on the

number of frost days, and the ring-recovery data. Combining of independent sources of

data underlies the integrated population modeling (IPM) framework and allows for a more

precise parameter estimation. This is due to the survival parameters αi, βi, i ∈ 1, a, being

common to the state space model for the census data and to the ring-recovery model

Census data The census data are derived from the Common Birds Census (CBC) of

the British Trust for Ornithology, which recently has been replaced by the Breeding Bird

Survey. The dataset is constructed as annual estimates of the number of breeding female

lapwings based on annual counts made at a number of sites around the UK. Since only a

small fraction of sites are surveyed each year, the index can be seen as a proxy for the total

population size. For comparability, we use the same time span as Brooks et al. (2004) and

King (2011), i.e. from 1965 to 1998. The choice of the starting year is there motivated by

the fact that in earlier years the index protocol was being standardized. Finally we note

that year 1965 is associated with time index t = 3, for consistency with the ring-recovery

data (to be discussed below) which start in 1963. The left panel in Figure 3 presents the

census data.

1965 1970 1975 1980 1985 1990 1995

Year

500

1000

1500

2000
Lapwings: observed census data

1965 1970 1975 1980 1985 1990 1995

Year

-2

-1

0

1

2

3
Frost days (normalised)

Figure 3: Lapwings census data and normalised frost days.
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Weather data For bird species there is a natural relationship between the survival prob-

abilities and the weather conditions, most importantly winter severity. Following Besbeas

et al. (2002) we measure this factor for year t by the number of days between April of year t

and March of year (t+ 1) inclusive in which the temperature in Central England fell below

freezing and denote it by fdayst. We further normalize fdayst to obtain ft which we use

as a regressor in the logistic regression for the survival probabilities (see the right panel

in Figure 3). As noted by King (2011), normalization of covariates is done to improve the

mixing of the sampling scheme and to facilitate the interpretation of the parameters of the

logistic regression (intercept and slope).

Ring–recovery data Ring–recovery studies aim at estimating demographic parameters

of the population under consideration including first-year survival probabilities and adult

survival probabilities. These studies consist in marking individuals (e.g. with a ring or a

tag) at the beginning of period t and then releasing them. In subsequent periods t+ 1, t+

2, . . . the number of dead animals is recorded, where it is assumed that any recovery of a

dead animal is immediate. For lapwings, the ringed birds are chicks (“fist-years”) and a

“period” corresponds to a “bird year” i.e. 12 months from April to March. We analyze the

ring-recovery data for the releases from 1963 to 1997, with the recoveries up to 1998.

Ring-recovery data are stored in an array, an example of which is provided in Table

1. The first column corresponds to the number of ringed animals in a given year Rt,

t = 1, . . . , T − 1, and the subsequent columns report the number of rings mt,s recovered in

the interval (s, s+ 1], s = 1, . . . , T −1, from animals released in year t. Obviously, mt,s = 0

for t > s. Finally, we denote by mt,T the number of individuals ringed in year t but never

seen again (their rings are not recovered), where mt,T = Rt −
∑T−1

s=1 mt,s.

The parameters of interest are φ1,t, φa,t and λt. The former two are the conditional

probabilities of survival until year t+1 of a first-year and an adult, respectively, given such

an individual is alive in year t. The latter one is the conditional probability of recovering

a ring at time t, given the individual dies in the interval (t − 1, t] . Each row mt =

{mt,s}Ts=1, t = 1, . . . , T −1, of the m-array is multinomially distributed: mt ∼MN (Rt, qt)

(MN denotes the multinomial distribution), where qt = {qt,s}Ts=1 are the multinomial cell

10



Year of Number Year of Recovery s

Ringing t Ringed 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

1963 1147 14 4 1 2 1 0 1 1 0 0 0

1964 1285 20 3 4 0 1 1 0 0 0 0

1965 1106 10 1 2 2 0 2 2 1 1

1966 1615 9 7 4 2 1 1 0 0

1967 1618 12 1 6 2 0 0 1

1968 2120 9 6 4 0 2 2

1969 2003 10 8 5 3 1

1970 1963 8 3 2 0

1971 2463 4 1 1

1972 3092 7 2

1973 3442 15

Table 1: A fragment of Ring-Recovery Data for lapwings for the years 1963-1973, table

from King (2011).

probabilities specified for t = 1, . . . , T − 1 as2

qt,s =



0, s = 1, . . . , t− 1,

(1− φ1,t)λt s = t,

φ1,t

(∏s−1
k=t+1 φa,k

)
(1− φa,s)λs, s = t+ 1, . . . , T − 1,

1−
∑T+1

s=1 qt,s, s = T.

The likelihood of the m-array is then given by

p(m|φ1,φa,λ) ∝
T−1∏
t=1

T∏
s=t

q
mt,s

t,s .

The array m = [mt,s]
s=1,...,T
t=1,...,T−1 is a sufficient statistic for ring-recovery data.

Following Besbeas et al. (2002) we assume that the time-varying recovery rate λt follows

a logistic regression given by

logitλt = log

(
λt

1− λt

)
= αλ + βλt̃t,

2For s = t+ 1 we put
∏s−1

k=t+1:=1.
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where t̃ is the normalized time index.

D Extensions of the basic SV model

D.1 SV in the mean

The proposed SCDA scheme easily extends to more complex models, e.g. the popular

Stochastic Volatility in the Mean (SVM) model of Koopman and Uspensky (2002) (see

also Chan, 2017). Its basic specification is given by

yt|ht,θ ∼ N (β exp(ht), exp(ht)) , (8)

ht+1|ht ∼ N
(
µ+ φ(ht − µ), σ2

)
, (9)

h0 ∼ N
(
µ,

σ2

1− φ2

)
, (10)

for t = 1, . . . , T . Hence, the latent volatility process ht influences both the conditional

variance and the conditional mean of the observation series yt, which is additionally con-

trolled by a scaling parameter β. For the volatility parameters µ, φ and σ2 we adopt the

prior specification as for the standard SV model, while for the mean-scaling parameter we

specify β ∼ N (0, σ2
β0

), with σ2
β0

= 10.

D.2 SV with leverage

The basic SV or SVM models can be extended to allow for leverage effects, i.e. a feedback

from past logreturns to the current value of the volatility process. This effect is typically

modeled as a negative correlation between the last period logreturns and the current value

of volatility. The motivation behind the leverage effect is that the volatility in financial

markets may adapt differently to positive and negative shocks/news (affecting logreturns),

where large negative shocks are likely to increase the volatility. The SV model with leverage

(SVL) has been frequently analyzed in the literature, see Jungbacker and Koopman (2007),

Meyer and Yu (2000), Yu (2005), Durbin and Koopman (2012, Section 9.5.5.) or Zucchini

12



et al. (2016, Section 20.2.3). For convenience, we rewrite the basic SV model (15)–(16) as

yt = exp(ht/2)εt, εt ∼ N (0, 1) ,

ht+1 = µ+ φ(ht − µ) + ηt, ηt ∼ N
(
0, σ2

)
,

h1 ∼ N
(
µ,

σ2

1− φ2

)
,

for t = 1, . . . , T . The only difference between the SVL model and the basic specification

of the SV model is that now the error terms εt and ηt are assumed to be correlated:

corr[εt, ηt] = ρ 6= 0, with ρ typically estimated to be negative. This apparently slight

modification has, however, substantial effect on the dependence structure in the model

(see Figure 4) and hence the conditional distribution of ht. To derive the latter several

reformulations of the model has been proposed (Jungbacker and Koopman, 2007 or Meyer

and Yu, 2000), however we will use the treatment provided by Zucchini et al. (2016, Section

20.2.3). These authors use the basic regression lemma for normal variables to show that

ht|ht−1, yt−1, µ, φ, σ2, ρ ∼ N
(
µ+ φ(ht−1 − µ) +

ρσyt−1
exp(ht−1/2)

, σ2(1− ρ2)
)

(11)

(the details of the derivation are provided in the next subsection). Formulation (11) is

particularly convenient for “reusing” the derived integration scheme for the basic SV model,

as we only need to adjust the transition probabilities in the approximation to Dt.

D.3 Modifications to the HMM-based approximation

The proposed HMM-based approximation to SCDL can be easily adapted to allow for both

extension by simply modifying the components of the matrices Γt, Pt and Qt specified

in (10)–(12). Notice that for the SVM model the dependence structure of the state is

the same as for the basic SV model, hence the core of the integration/imputation scheme

remains unchanged. What needs to be adjusted is the observation density, which can be

done is a straightforward manner. The modification for the SVL model requires adjusting

of the transition probabilities and the pdfs of the augmented states. Below we present the

required modifications for the largest model, allowing for both SV in the mean and for the

leverage effect (which we refer to as the SVML model).
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ht−1 ht ht+1

yt−1 yt yt+1

Figure 4: SV model with leverage: modified dependence structure due to feedback from

the logreturns yt−1 to logvolatilities ht.

Below, we skip θ in the conditioning to simplify notation. Following Zucchini et al.

(2016), we aim at deriving p(ht+1|ht, yt), the conditional distribution of ht+1 given ht and yt.

Since yt = exp(ht/2)εt we can replace conditioning on yt by conditioning on εt. Moreover,

conditioning on ht is equivalent to conditioning on ηt and adding the mean µ+ φ(ht − µ).

Hence, we are interested in the the distribution of ηt given εt.

The distribution of ηt|εt can be obtained using the basic result from multivariate normal

regression, which we recall below for convenience:x
y

 ∼ N
µx

µy

 ,
 σ2

x σxy

σxy σ2
y

 ⇒ x|y ∼ N
(
µx +

σxy
σ2
y

(y − µy), σ2
x −

σ2
xy

σ2
y

)
.

Hence, we obtain

ηt|εt ∼ N
(

0 +
ρσ

1
(y − 0), σ2 − ρ2σ2

1

)
= N (ρσεt, σ

2(1− ρ2))

so that

ht+1|ht, εt ∼ N
(
µ+ ρ(ht − µ) + ρσεt, σ

2(1− ρ2)
)
.

Finally, we can express the latter in terms of the actual observation yt rather than the

unobserved disturbance εt. For the basic SV model this becomes

ht+1|ht, yt ∼ N
(
µ+ ρ(ht − µ) + ρσ

yt
exp(ht/2)

, σ2(1− ρ2)
)
,

which is the result reported in Section D.2, while for the SVM we have

ht+1|ht, yt ∼ N
(
µ+ ρ(ht − µ) + ρσ

yt − β exp(ht)

exp(ht/2)
, σ2(1− ρ2)

)
.
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E Additional results

E.1 Lapwings data

Figure 5 illustrates the posterior means and 95% credible intervals (CI) for the adult pop-

ulation comparing the accuracy of the full DA with that of the SCDA methods (separately

for the adaptive intervals and fixed bins). We can see that all the methods deliver virtually

the same posterior means and comparable 95% symmetric CI, with only the fixed bin case

with 10 bins deviating slightly from all other methods. Interestingly, 10 adaptive bins give

very comparable estimates to the other approaches in this case, indicating an increased

accuracy of the adaptive approach.

Figure 5: Lapwings data: the posterior means and 95% CI for the adult population.
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Tables 2 and 3 report the estimation results for all the methods considered for the

parameters and selected imputed states, respectively. Figure 6 shows the ACF plots for

selected imputed states.

Figure 6: Lapwings data: ACF plots for the adult population.
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Table 2: Lapwings data: parameter posterior means, standard deviations and ESSs. The

highest ESS and ESS/sec. for each parameter in bold. Computing times (in seconds) in

square brackets.

Method α1 αa αρ αλ β1 βa βρ βλ σ2
y

DA Mean 0.547 1.574 -1.189 -4.578 -0.164 -0.240 -0.348 -0.364 30180

(Std) (0.068) (0.071) (0.091) (0.035) (0.062) (0.039) (0.043) (0.04) (8890)

ESS 685 124 112 1089 1050 389 106 8206 1245

[1204 s] ESS/sec. 0.57 0.10 0.09 0.90 0.87 0.32 0.09 6.82 1.03

Adapt10 Mean 0.547 1.564 -1.180 -4.580 -0.163 -0.239 -0.350 -0.364 30355

(Std) (0.068) (0.070) (0.092) (0.035) (0.061) (0.040) (0.040) (0.040) (8928)

ESS 1490 390 316 3035 2777 527 126 7492 1852

[978 s] ESS/sec. 1.52 0.40 0.32 3.10 2.84 0.54 0.13 7.66 1.89

Adapt20 Mean 0.544 1.564 -1.173 -4.581 -0.162 -0.238 -0.342 -0.363 30002

(Std) (0.069) (0.072) (0.094) (0.035) (0.060) (0.039) (0.039) (0.040) (8759)

ESS 1359 395.695 324.918 2720.786 2685.188 586.964 243.425 8212 2075

[1068 s] ESS/sec. 1.27 0.37 0.30 2.55 2.515 0.55 0.23 7.69 1.94

Adapt30 Mean 0.542 1.561 -1.166 -4.581 -0.162 -0.241 -0.339 -0.363 30311

(Std) (0.069) (0.071) (0.092) (0.036) (0.061) (0.039) (0.040) (0.040) (8888)

ESS 1438 322 243 2736 2471 564 196 7146 2129

[1025 s] ESS/sec. 1.40 0.31 0.24 2.67 2.41 0.55 0.19 6.97 2.08

Fixed10 Mean 0.512 1.441 -1.044 -4.599 -0.207 -0.205 -0.348 -0.353 29992

(Std) (0.070) (0.055) (0.063) (0.034) (0.050) (0.039) (0.022) (0.040) (8837)

ESS 942 34 37 562 181 105 282 8771 1627

[1022 s] ESS/sec. 0.92 0.03 0.04 0.55 0.18 0.10 0.28 8.58 1.59

Fixed20 Mean 0.546 1.570 -1.179 -4.579 -0.170 -0.240 -0.343 -0.364 30156

(Std) (0.069) (0.069) (0.090) (0.035) (0.061) (0.039) (0.040) (0.040) (8802)

ESS 1250 270 210 2328 2566 525 139 8582 2270

[1060 s] ESS/sec. 1.18 0.25 0.20 2.19 2.42 0.49 0.13 8.09 2.14

Fixed30 Mean 0.545 1.562 -1.170 -4.580 -0.162 -0.240 -0.342 -0.363 30012

(Std) (0.069) (0.073) (0.095) (0.035) (0.061) (0.039) (0.040) (0.040) (8698)

ESS 1758 438 329 2902 2873 502 208 7613 2706

[1136 s] ESS/sec. 1.55 0.39 0.29 2.55 2.52 0.44 0.18 6.70 2.38

Exact Mean 0.545 1.564 -1.175 -4.580 -0.162 -0.240 -0.345 -0.363 30063

(Std) (0.068) (0.069) (0.090) (0.035) (0.060) (0.039) (0.042) (0.040) (8771)

ESS 1632 433 362 3059 2659 720 191 8860 2734

[2855 s] ESS/sec. 0.57 0.15 0.13 1.07 0.93 0.25 0.07 3.10 0.96
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Table 3: Lapwings data: posterior means, standard deviations and ESSs. The highest ESS

and ESS/sec. for each state in bold. Computing times (in seconds) in square brackets.

Method Na4 Na8 Na12 Na16 Na20 Na24 Na28 Na32 Na36 Namin Namax

DA Mean 1083.51 1325.45 1674.38 1935.84 1614.73 1264.61 1174.20 964.85 776.15 1113.76 1083.51

(Std) (26.31) (43.08) (52.06) (67.99) (53.97) (53.68) (49.46) (59.57) (72.07) (50.97) (26.31)

ESS 460 179 120 134 147 154 59 62 68 55 460

[1204 s] ESS/sec. 0.38 0.15 0.10 0.11 0.12 0.13 0.05 0.05 0.06 0.05 0.38

Adapt10 Mean 1083.46 1326.45 1681.57 1947.34 1621.63 1268.14 1174.99 962.14 770.63 1113.57 1083.46

(Std) (26.25) (43.50) (51.51) (68.96) (53.63) (56.49) (49.99) (56.98) (66.91) (51.06) (26.25)

ESS 880 393 318 335 295 234 43 46 51 42 879

[978 s] ESS/sec. 0.90 0.40 0.32 0.34 0.30 0.24 0.04 0.05 0.05 0.043 0.90

Adapt20 Mean 1081.74 1320.73 1670.04 1934.08 1615.29 1268.92 1181.09 973.61 785.42 1121.17 1081.74

(Std) (27.45) (44.99) (52.41) (67.96) (51.42) (53.69) (46.37) (51.32) (61.67) (46.41) (27.45)

ESS 792 301 263 413 299 311 174 150 161 167 792

[1068 s] ESS/sec. 0.74 0.28 0.25 0.39 0.28 0.29 0.16 0.14 0.15 0.16 0.74

Adapt30 Mean 1081.74 1319.29 1670.94 1938.90 1617.39 1268.43 1184.04 978.16 791.52 1124.32 1081.74

(Std) (27.37) (45.49) (51.54) (65.25) (53.62) (54.57) (48.40) (56.59) (68.24) (49.64) (27.37)

ESS 597 278 247 434 326 306 181 155 164 171 597

[1025 s] ESS/sec. 0.58 0.27 0.24 0.42 0.32 0.30 0.18 0.15 0.16 0.17 0.58

Fixed10 Mean 1075.91 1343.03 1699.24 1979.99 1671.88 1313.00 1194.68 954.96 733.69 1140.26 1075.91

(Std) (26.81) (43.44) (50.66) (62.41) (48.44) (54.65) (42.54) (39.70) (41.44) (43.18) (26.81)

ESS 868 310 327 243 173 108 97 163 92 88 868

[1022 s] ESS/sec. 0.85 0.30 0.32 0.24 0.17 0.10 0.10 0.16 0.09 0.09 0.85

Fixed20 Mean 1079.80 1319.96 1671.12 1939.17 1619.88 1270.62 1183.22 976.20 788.92 1123.72 1079.80

(Std) (25.97) (44.14) (51.98) (67.01) (52.05) (54.00) (46.78) (53.32) (64.39) (47.5) (25.97)

ESS 785 279 225 331 344 328 74 58 64 67 785

[1060 s] ESS/sec. 0.74 0.26 0.21 0.31 0.32 0.31 0.07 0.05 0.06 0.06 0.74

Fixed30 Mean 1079.48 1320.18 1671.22 1936.26 1615.844 1268.040 1181.895 975.230 787.55 1121.97 1079.48

(Std) (25.72) (43.24) (48.00) (62.93) (50.327) (53.921) (46.464) (53.46) (65.12) (47.10) (25.72)

ESS 911 370 374 505 347 247 111 90 98 102 911

[1136 s] ESS/sec. 0.80 0.33 0.33 0.44 0.30 0.22 0.10 0.08 0.09 0.09 0.80

Exact Mean 1083.13 1324.13 1675.32 1939.63 1615.88 1265.87 1176.69 968.36 780.24 1116.33 1083.13

(Std) (27.19) (44.55) (52.06) (67.38) (53.86) (54.55) (46.09) (54.11) (66.99) (47.25) (27.19)

ESS 902 349 293 366 402 418 197 122 117 168 902

[2855 s] ESS/sec. 0.32 0.12 0.10 0.13 0.14 0.15 0.07 0.04 0.04 0.06 0.32
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E.2 SV model

The top panel in Figure 7 presents the ACF plots for the parameters of the SV model and

the bottom panel – for the SVML model. Tables 4 and 5 report the estimation results for

selected imputed volatilities in the SV and SVML model, receptively. The top panel in

Figure 8 presents the ACF plots for these volatilities for the SV model, while the bottom

one for the SVML model.
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Table 4: SV model: volatility posterior means, standard deviations and ESSs. Computing

times (in seconds) in square brackets.

Method h450 h950 h1450 h1950 h2450 h2950 h3450 h3950 h4450

DA Mean 0.974 0.259 -0.009 -0.006 0.257 1.083 0.011 0.733 -0.782

(Std) (0.444) (0.417) (0.404) (0.492) (0.466) (0.449) (0.485) (0.457) (0.454)

[112 s] ESS 458 488 573 302 395 501 301 377 428

Adapt10 Mean 1.002 0.213 0.0104 -0.051 0.243 1.064 -0.022 0.753 -0.781

(Std) (0.434) (0.431) (0.432) (0.492) (0.469) (0.445) (0.479) (0.453) (0.482)

[1980 s] ESS 1251 1490 1438 1246 1046 1510 1426 1338 1309

Adapt20 Mean 0.978 0.228 0.020 -0.040 0.241 1.059 -0.014 0.742 -0.805

(Std) (0.434) (0.447) (0.4358) (0.504) (0.467) (0.442) (0.489) (0.448) (0.467)

[2290 s] ESS 1667 1224 1435 1330 1286 1460 1157 1290 1403

Adapt30 Mean 0.961 0.225 0.014 -0.052 0.240 1.101 0.014 0.745 -0.782

(Std) (0.439) (0.438) (0.431) (0.499) (0.457) (0.442) (0.482) (0.436) (0.474)

[2567 s] ESS 1583 1638 1521 1270 1410 1608 1359 1458 1331

Fixed20 Mean 0.979 0.207 0.018 -0.048 0.251 1.069 0.010 0.756 -0.808

(Std) (0.437) (0.428) (0.428) (0.490) (0.471) (0.441) (0.480) (0.448) (0.482)

[1683 s] ESS 1419 1243 1633 1223 1179 1456 1395 1217 1171

Fixed30 Mean 0.961 0.228 0.008 -0.048 0.238 1.075 -0.011 0.731 -0.819

(Std) (0.424) (0.424) (0.428) (0.501) (0.464) (0.445) (0.487) (0.437) (0.464)

[2057 s] ESS 1152 1760 1367 1158 1396 1422 1292 1223 1539
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Table 5: SVML model: volatility posterior means, standard deviations and ESSs. Com-

puting times (in seconds) in square brackets.

Method h450 h950 h1450 h1950 h2450 h2950 h3450 h3950 h4450

DA Mean 0.961 0.478 -0.163 0.011 0.448 1.026 -0.010 0.659 -0.963

(Std) (0.429) (0.405) (0.449) (0.517) (0.407) (0.439) (0.479) (0.431) (0.506)

[203 s] ESS 651 421 540 277 621 634 507 349 346

Adapt10 Mean 0.955 0.454 -0.198 -0.022 0.413 1.024 -0.004 0.682 -0.984

(Std) (0.416) (0.402) (0.423) (0.481) (0.408) (0.408) (0.435) (0.447) (0.468)

[1511 s] ESS 1551 1193 1184 1199 1550 1860 1278 1140 1089

Adapt20 Mean 0.920 0.470 -0.127 0.008 0.419 1.016 -0.055 0.677 -0.929

(Std) (0.400) (0.405) (0.450) (0.489) (0.419) (0.421) (0.463) (0.435) (0.493)

[2039 s] ESS 1708 1280 1152 1009 1493 1622 1353 1231 971

Adapt30 Mean 0.915 0.409 -0.136 -0.034 0.402 1.030 -0.053 0.697 -0.948

(Std) (0.404) (0.398) (0.439) (0.486) (0.403) (0.430) (0.438) (0.451) (0.483)

[2497 s] ESS 1860 1334 1846 1227 1487 1550 1353 1322 1205
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(a) SV model.

(b) SVML model.

Figure 7: SV and SVML model: ACF plots for parameters.
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(a) SV model.

(b) SVML model.

Figure 8: SV and SVML model: ACF plots for selected volatilities.
23
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